
République Algérienne Démocratique et Populaire 
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique 

Université 20 Août 1955 - Skikda 
 
 

Réf : D012118015D 
 
 

Faculté de Technologie 
Département de Génie Electrique 

Laboratoire d’Automatique Skikda 

 

THÈSE 
En vue de l’obtention du diplôme de 

Doctorat LMD 
Domaine : Science et Technologie 

Filière : Génie Electrique 

Spécialité : Automatique 

 

Présentée par 
 

GANOUCHE Abderahmane 
 

Thème 

Modélisation et Commande d’une génératrice asynchrone 
à double stator (BDFM) : Application à une Eolienne. 

 
Soutenue publiquement le : 18/06/2018 
Devant le jury composé de : 
 

Président Dr. MEHENAOUI Lamine MCA Université de Skikda 

Encadreur Dr. BOUZEKRI Hacene      Professeur Université de Skikda 

Examinateurs Dr. KIDOUCHE Madjid  Professeur Université de Boumerdes 

 Dr. GHERBI Sofiane MCA Université d’Annaba 

 Dr. AHMIDA Zahir MCA Université de Skikda 

 

Année 2018 

 سكيكدة 1955أوت  20جامعة 



People's Democratic Republic of Algeria 
Ministry of Higher Education and Scientific Research 

University 20 August 1955 – Skikda 
 
 

Ref : D012118015D 
 

Faculty of Technology 
Department of Electrical Engineering 

Automatic Laboratory of Skikda 

 

Thesis  
for the degree of  

Doctor of Philosophy (LMD Doctorate) 

Domain: Science and Technology 

Section: Electrical Engineering 

Specialty: Automatic 

 

Presented by 
 

GANOUCHE Abderahmane 
 

Theme 

Modelling and Control of Brushless Doubly Fed Machine 
(BDFM): Wind Power Application. 

 
Presented publicly on: 18/06/2018 
  
 

President Dr. MEHENAOUI Lamine Associate Professor University of Skikda 

Supervisor Dr. BOUZEKRI Hacene      Full Professor University of Skikda 

Examiners Dr. KIDOUCHE Madjid  Full Professor University of Boumerdes 

 Dr. GHERBI Sofiane Associate Professor University of Annaba 

 Dr. AHMIDA Zahir Associate Professor University of Skikda 

 
 

Year 2018 

 سكيكدة 1955أوت  20جامعة 



iii

Acknowledgements

This work has been done at the automatic laboratory of Skikda under the su-
pervision of, Dr. Hacene BOUZEKRI, professor at the department of electrical
engineering, technology faculty, University 20 August 1955 Skikda

First of all, I thank Almighty God for having guided me during all my years of
study and Who helped me to carry out this work, giving me strength, patience and
intention. Then,

I want to express my honest gratitude and deep appreciation to my supervisor,
Dr. Hacene BOUZEKRI, for directing, supporting and orienting me in my prepara-
tion of this work. His availability, feedback and scientific commitment have greatly
helped me throughout these years.

I also want to thank Dr. Lamine MEHENAOUI, associate professor at the
University 20 August 1955 of Skikda for the honour he gave me by accepting to be
the head of the jury of my thesis.

I would also like to thank: Dr. Madjid KIDOUCHE, professor at Boumerdes
University, Dr. Sofiane GHERBI, associate professor at Annaba University and,
Dr. Zahir AHMIDA, associate professor at Skikda University for having accepted
to evaluate this work. I would like to acknowledge Dr. Zahir AHMIDA, for his
technical support. It has been a pleasure to work with you.

I would also like to express my gratitude to, Dr. Abdelmalek KHEZZAR,
professor at Constantine 1 University, and Dr. Ahmed Lokmane NEMMOUR,
associate professor at Constantine 1 University for permitting us to perform some



iv

experiments in their laboratory.

Further, I want to thank my colleagues here at Skikda University who have
always been present to discuss ideas with. Special thanks to Antar BEDDAR,
Rochdi BOUCHEBBAT, Abderezzak LAOUAFI, Abdel Mouneim KHEMISSAT
and Mehdi BOUKROUH whose support and help have proven to be invaluable.

Last but not least, I want to thank Dr. Sedat SÜNTER, professor at Firat
University, for accepting and guiding me during my internship exchange as PhD
international student at Firat University, Elazığ, Turkey.

Dr. Hüseyin ALTUN, professor at Firat University, and Mr. Cem CATAL-
BAS, Miss Melike ESEN and Mr. Musab COSKUN research assistants at Firat
University, and Mr. Abdul Mumin IDDRISU and Mr. Musah MUNAH interna-
tional students preparing Master’s degree at Firat university are all considerably
acknowledged for their human qualities and technical support.

Lastly, I would like to thank my father for providing the early foundations and
support that were necessary to get me where I am, and I would like to thank my
lovely wife, who supported my work and without whom this research would be a
much duller experience. To whom together with my daughter as well as the memory
of my mother, I dedicate this dissertation.

Abderahmane Ganouche



v

Abstract

The Brushless Doubly Fed Machine (BDFM) continues to attract increasing interest
for applications in wind power generation systems and variable speed motor drives
where, robustness and low servicing costs are much desirable. As has been men-
tioned by various studies, the main disadvantage of this machine is its control which
is relatively complex with respect to the Doubly Fed Induction Machine (DFIM).
This difficulty is mainly due to the lack of a mathematical model connecting the
inputs of the machine (control winding) to its outputs (power winding). To solve
this problem, a new model that describes the input-output relationships of the ma-
chine is proposed. This dissertation adopts a transfer function approach to derive
a mathematical model of the BDFM as a Multiple-Input Multiple-Output (MIMO)
dynamic system. The proposed model is used to carry out a stability analysis of
a benchmark machine under unbalanced grid voltage conditions and parameters
variation. The stability study is done in an extremely wide speed range, and valid
for both motor and generator operation modes. In addition to the stability invest-
igation, the mathematical model is used to synthesise appropriate controllers for
the BDFM as generator connected to the grid. The validity of the proposed model
has been verified by experimentation, and the effectiveness of the control scheme
has been validated by simulations.

Keywords

Brushless doubly fed machine; BDFM; linearisation; small signal model; mathem-
atical model; stability analysis; PI controller; robust control.



  الملخص
 

في جذب اھتمام متزاید للتطبیقات في أنظمة تولید ) ق.ت.ث.ح.ا(التغذیة القفصیة  ثنائیةتستمر الآلة الحثیة 

محركات ذات السرعة المتغیرة، حیث تكون القوة والتكالیف المنخفضة للصیانة الالطاقة من الریاح و

المعقدة  آلیة التحكمفإن العیب الرئیسي لھذه الآلة ھو  كما ذُكر في دراسات مختلفة ،. مرغوبة إلى حد كبیر

وتعود ھذه الصعوبة بشكل رئیسي إلى عدم وجود نموذج ریاضي . التغذیة ثنائیة الحثیةلآلة بامقارنة نسبیاً 

لحل ھذه المشكلة ، تم اقتراح نموذج جدید ). لفّ الطاقة( ھابمخرجات) التحكم لفّ ( الآلةیربط مدخلات 

 لـِلاشتقاق نموذج ریاضي  تحویل دالةتتبنى ھذه الأطروحة أسلوب . الآلة مخرج-مدخلیصف علاقات 

تم استخدام النموذج المقترح ). م.م.م.م(المخرجات - المدخلات متعدد-كنظام دینامیكي متعدد ق.ت.ث.ح.ا

وتغیر  كھربائیةال شبكةلل متوازن غیر ظروف جھد تحت الأداء مقیاسلإجراء تحلیل الاستقرار لآلة 

 التشغیل وسائط من لكل صالحةھي ودراسة الاستقرار في نطاق سرعة واسع للغایة،  تتم. المعلمات

 مناسبة تحكم وحدة لتطویر الریاضي النموذج استخدام تم للاستقرار، تحقیق إلى بالإضافة .ومولد محرك

التحقق من صحة النموذج المقترح عن طریق التجریب،  تم. الكھرباء شبكةب متصل ق كمولد.ت.ث.ح.ا ل

  .المحاكاة بواسطةومن فعالیة مخطط التحكم 

  

  الكلمات المفتاحیة
  
 الاستقرار؛ تحلیل ریاضي؛ نموذج صغیرة؛ إشارة نموذج ؛ق.ت.ث.ح.ا ؛ قفصیة التغذیة ثنائیة حثیة آلة

  .تحكم قوي تكاملي؛ تناسبي متحكم
  

Résumé 
La machine asynchrone à double stator (BDFM) continue d'attirer un intérêt croissant pour 
les applications dans les systèmes de production d'énergie éolienne et les entraînements de 
moteurs à vitesse variable où la robustesse et les faibles coûts d'entretien sont très 
souhaitables. Comme il a été mentionné par diverses études, l’inconvénient principal de 
cette machine est sa commande qui est relativement complexe par rapport à la machine 
asynchrone à double alimentation. Cette difficulté est principalement due à l'absence d'un 
modèle mathématique reliant les entrées de la machine (bobinage de contrôle) à ses sorties 
(bobinage de puissance). Pour résoudre ce problème, un nouveau modèle qui décrit les 
relations entrée-sortie de la machine est proposé. Cette thèse adopte une approche par 
fonction de transfert pour dériver un modèle mathématique de la BDFM en tant qu’un 
système dynamique entrées multiples, sorties multiples. Le modèle proposé est utilisé pour 
effectuer une analyse de la stabilité d'une machine prototype dans des conditions de tension 
de réseau déséquilibrées et de variation de paramètres. L'étude de la stabilité est réalisée 
dans une plage de vitesse extrêmement large, et valable pour les modes de fonctionnement 
moteur et générateur. En plus de l'étude de la stabilité, le modèle mathématique est utilisé 
pour synthétiser des contrôleurs appropriés pour la BDFM comme une génératrice connecté 
au réseau. La validité du modèle proposé a été vérifiée par expérimentation, et l'efficacité 
du schéma de contrôle a été validée par simulation.  

Mots clés 
machine asynchrone à double stator; BDFM; linéarisation; modèle petit signal; modèle 
mathématique; analyse de la stabilité; Contrôleur PI; contrôle robuste. 
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Chapter 1

Introduction

After the global warming as well as the environmental pollution caused by the use
of petroleum, coal and gas which are known as fossil fuel, the world is now moving
towards the adoption of clean and renewable energy sources as an alternative [1,2].

The wind energy is one of the most important renewable energies currently
known which is considered to be the most promising compared to all other renew-
able sources.

The wind energy is converted into electric energy by means of wind turbines. To
increase the spread of wind turbines around the world, technological progress aims
to reduce the costs of its construction and installation, as it also seeks to maximise
the extracted electrical power.

Wind turbines can be classified into two basic types determined by which way
the turbine rotates. Wind turbines that rotate around a horizontal axis are more
common (such as a windmill), while wind turbines that rotate around a vertical
axis are less commonly used (Savonius and Darrieus are the most famous). A wind
turbine (horizontal axis wind turbine) consists of four main parts: the base; the
tower; the nacelle; and the blades. The blades capture the energy of the wind
and rotate a generator located inside the nacelle. The tower contains electrical
conductors, supports the nacelle and gives access to the nacelle for maintenance.
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The base is made of concrete and steel, and it supports the entire structure.

The generator inside the nacelle converts the rotational movement into elec-
tricity. Basically, a wind turbine can be equipped with asynchronous (induction)
machines or synchronous machines. These machines are commonly called generat-
ors in wind energy conversion systems [3].

In fact, the use of an excitation with a permanent magnet in the permanent
magnet synchronous machine requires the use of a full-scale power converter so as
to adjust the voltage and frequency generated to those of the grid, which increases
the cost of the system. Moreover, the use of the Doubly Fed Induction Machine
(DFIM) requires a partial-scale power converter, approximately 30% of the total
power.

Due to the fact that installation and maintenance costs of wind turbines do not
depend on the machine size, the DFIM have dominated wind turbine applications,
and the output power of today’s wind turbines has exceeded 9 MW (Vestas V164).

Despite of the advantage of the DFIM cited above, which is mainly its ability to
operate in variable-speed constant-frequency generation using partial-rated power
converter, however, the use of brushes and slip rings to transfer the power to or
from the rotor windings requires perpetual maintenance which increases servicing
cost. Hence, many researchers start to study the Brushless Doubly Fed Machine
(BDFM) which holds the same advantages those of the DFIM and overcomes its
main drawback cited thereof [4–6].

From the huge and rapidly growing literature on the BDFM design, operation,
modelling and so on. Therefore, many important and valuable contributions could
not be mentioned.
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1.1 Review of the BDFM

1.1.1 History of the design and operation of the BDFM

The history of today’s BDFM started in the beginning of the 20th century where
Hunt proposed a new induction machine, known later as the ‘cascaded DFIM’. He
incorporated in the same frame two DFIMs with an ingenious design of the stator
windings and the rotor which significantly reduces the iron losses [7, 8].

In 1920, Creedy made an important improvement, he proposed a cascaded
DFIM of 3 and 1 pole-pairs, and developed a logical and simple rotor design [9].

In 1970, Broadway and Burbridge achieved a considerable contribution in the
BDFM rotor design. They proposed several rotor designs, in which they had pro-
posed a special rotor and the most used ever after known as ‘nested-loop rotor’.
They also proposed an equivalent circuit for the BDFM and analysed some steady-
state performances [10]. Later, Broadway et al. studied the brushless doubly fed
reluctance machine and they discussed saturation effects [11,12].

In 1978, Kusko and Somuah presented results of works on the BDFM with two
electrical windings in the rotor and claim that the Broadway rotor would have an
improvement [13]. They were the first who noted that the BDFM behave like a
synchronous machine in the synchronous mode of operation.

In 1983 and 1987, Shibata published on the BDFM in cascaded operation mode
with Kohrin in [14], then on the double feed synchronous operation mode with Taka
in [15].

In the end of 1980s and the beginning of 1990s, an extensive study of the BDFM
was made by Oregon State University. Many researchers studied intensively the
BDFM, and the acronym ‘BDFM’ is origin of their publications. They firstly used
the nested-loop rotor BDFM and developed an equivalent circuit for their prototype
machine, then used this model to study BDFM performances [16, 17]. In 1990,
Rochelle et al. studied the stator winding configuration between the use of spatial
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separation and the use of different pole-pairs numbers [18]. They concluded that
the latter can lead to circulation currents. Henceforth, most of the work in Oregon
State University use spatially separated windings. In 1992 and 1993, Ramchandran
et al. offered a frequency-domain method to estimate the parameters of the BDFM
d−q model in the rotor reference frame [19,20]. In 1993, Wallace et al. studied the
BDFM and showed that the BDFM is flexible and good candidate for electricity
generation [21]. Later in 1993 and 1995, Lauw and Wallace et al. examined the
rotor design, presented some analyses and suggested improvements [22,23]. In 1995,
Boger and Wallace went farther and investigated the performance of the BDFM as
generator and presented a preferred operation region [24].

In 1996, Gorti et al. discussed the analysis of power distribution [25], but only
real power was considered. In the same year, Liao studied the BDFM and compared
it with the squirrel cage induction machine for variable speed applications and found
that the BDFM is a good alternative [26].

A year later, Boger, Williamson and Ferreira studied the inter-bar rotor currents
and showed by experiments that these currents reduce the efficiency of the BDFM
[27–29]. To deal with the inter-bar rotor currents, Koch et al. have just proposed
methods to achieve bar-to-stack insulation [30].

In 2002, Wang et al. compared experimentally between performances of the
cage rotor and the axially laminated anisotropic reluctance rotor for the BDFM [31].
They found that the cage rotor has better starting and asynchronous performances;
moreover, the axially laminated anisotropic rotor is advantageous in synchronous
and double-feed adjustable speed characteristics.

In 2006, McMahon et al. gave investigations on performance of the BDFM in
motor and generator modes by comparing the BDFM rating to those of the DFIM
and the cascaded-DFIM [32].

In 2009, a new formulation of the operating principle of BDFM in synchronous
mode was presented by Blazquez et al. [33]. This formulation was used to define
conditions for operation in synchronous mode and to evaluate the magnetic flux
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density distribution in the BDFM air gap.

In the early 2010s, several studies on the BDFM have been done by Gorginpour
et al. In order to analyse the stator defects of the BDFM, Gorginpour et al.
introduced a finite element model [34]. The simulation results of the finite element
model are compared with those of the dynamic one of Gorginpour et al. [35]. Later,
to investigate the operation modes of the BDFM which are the simple induction
mode, the cascade induction mode and the synchronous mode, Gorginpour et al.
presented a complete and comprehensive analytical study of these three operation
modes of the BDFM based on simple electromagnetic relations [36]. Due to the
fact that the BDFM suffers from lower efficiency in comparison to DFIM with
the same dimension, Gorginpour et al. proposed two years later a novel modelling
approach based on magnetic equivalent circuit aiming to optimise the BDFM design
[37]. In 2014, Gorginpour et al. proposed a magnetic equivalent circuit model for
the BDFM. This model is used to predict different performance aspects [38]. In
the meantime, on the one hand, Gorginpour et al. developed a multi-objective
optimisation using an imperialist competitive algorithm to significantly improved
the power-to-weight ratio of the BDFM [39]. On the other hand, Gorginpour et
al. presented analytical equations for calculating stray load loss and core loss in
BDFMs [40].

In 2015, El Achkar et al. investigated the steady-state operating limits of a
cascaded DFIM in terms of active and reactive power [41]. They showed that the
consumed reactive power is limited by the power winding current for the entire
operating speed; whereas the produced reactive power is limited by the control
winding current for a limited speed range. Two years later, the same research
group extended their investigation on the power capability of the cascaded DFIM,
where a generic analytic method is suggested to systematically derive the active
and reactive power domain [42]. The analytical approach is applicable to different
types of doubly fed machines and validated experimentally for the cascaded DFIM.

In 2017, Cheng et al. proposed a new machine design similar to the BDFM
and call it Brushless Doubly-fed Pulsed Alternator (BDPA) for high-energy pulsed
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lasers [43]. For the BDFM, the power and control windings are both three-phase
winding. Whereas for Cheng’s BDPA, as long as the load is single-phase (flash
lamp load), the power winding (armature winding) must be single phase as well,
and the control winding (field winding) can be designed either single-phase wind-
ing or three-phase winding. In the meantime, Djadi et al. presented an offline
parameters identification for the BDFM [44]. They used the recursive least squares
minimisation in the identification algorithm, and the BDFM was exited using pseu-
dorandom binary sequence combined with sinusoidal signal.

In 2018, Gholizadeh et al. introduced analytically the BDFM dynamic beha-
viour during various voltage dips [45]. Additionally, they carried out a comparison
between different voltage dips in order to identify critical operating points for Low
Voltage Ride Through (LVRT) assessment. Gholizadeh et al. proved also in [46] the
importance of the control winding current amplitude, and the overvoltage across
the crowbar resistor and BDFM side converter for improving LVRT capability of
the BDFM during asymmetrical voltage dips.

1.1.2 BDFM’s principle of operation

As mentioned earlier, the BDFM has two separate tri-phase sinusoidally distributed
windings. One set of windings, the primary, is directly connected to the grid. The
other set of windings, the secondary, is also connected to the grid, but, through a
bidirectional converter.

When the two stator winding sets are fed from a set of tri-phase symmetric
currents, two rotating Magneto Motive Forces (MMF) are produced along the air-
gap of the BDFM. Since the two sets of BDFM stator windings are of different
pole-pair number, pp for power windings and pc for control windings, and each of
them is fed by a different excitation current, ωp for power windings and ωc for
control windings, the rotating MMFs differ from each other and have no useful
interaction for electromechanical energy in safety conditions, except for torque and
force oscillations. However, with the magnetic modulation of the rotor, the two
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MMFs do have useful interaction for electromechanical energy conversion [47,48].

The BDFM rotor can be built in one of the two styles: the rotor with nested
cages of pr circuits or the rotor with reluctance segments of pr pieces. The first
configuration is considered in this dissertation. Equation (1.1) is to achieve mag-
netic separation between the two sets of BDFM stator windings, whereas Eq. (1.2)
is to allow indirect-cross-coupling between them:

pp 6= pc (1.1)

pr = pp + pc (1.2)

The BDFM can operate in both asynchronous and synchronous modes [5,27,49].

The asynchronous mode includes simple induction mode and cascade mode
of operation where the shaft speed depends on the machine load and the supply
excitation. These modes are important for understanding and analysing the BDFM
as well as for parameter estimation.

The synchronous mode is preferable for the reason that the rotor speed is inde-
pendent of the machine torque provided that this torque is less than the breakdown
torque. In fact, the rotor angular speed is only determined by the excitation of the
two stator windings.

Considering that the power winding has pp pole-pairs and the control winding
has pc pole-pairs, the BDFM rotor speed can be expressed as follows:

ωr = ωp + ωc
pp + pc

(1.3)

In synchronous conditions, the two coils of the stator cooperate to induce the
same frequency and distribution of currents in the rotor cage. The synchronous
operating speed equals to:

ωsync = ωp + ωc
pp + pc

(1.4)
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To obtain synchronous operation when the power winding is connected to the
grid, the frequency of currents and voltages in the control winding must verify:

ωc = (pp + pc)ωr − ωp (1.5)

1.2 Objectives of the Thesis

Over the last two decades, research concerning the BDFM focuses mostly on de-
veloping a competitive BDFM which could replace the regularly applied DFIM in
commercial wind power applications. Actually, the BDFM is a special machine
type which is attractive for use as generator in wind power systems, particularly
in offshore. In fact, brush and slip-ring issues account for more than 50% of gen-
erator failures in DFIM-based wind power systems which make the BDFM more
advantageous with higher reliability and lower maintenance cost. Even though the
BDFM has similar operating characteristics to the DFIM, nevertheless, its operat-
ing principle is far more complex and its control remains difficult, thus inhibiting
its commercialisation [50, 51]. Therefore, the aim of this dissertation is to propose
robust control schemes for the BDFM, which can be used in practical applications.
To fulfil this aim, this thesis is concerned with the derivation of new mathemat-
ical model for the BDFM which should be usable for applying conventional and
advanced control theories.

The tasks requested in the PhD research will be conducted according to the
following work plan:

• Development of new mathematical model for the BDFM;

• Investigation of the BDFM stability in open-loop operation;

• Determination of the optimal control structure for the BDFM.
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1.3 Outline of the Thesis

The current section addresses briefly the remainder of this dissertation which is
organised in six chapters and one appendix. Apart from the introduction and
conclusion chapters, it remains four chapters form the body of dissertation.

The first Chapter presents the introduction, the BDFM history, the BDFM
principle of operation, the objectives and aims, and the scope of the thesis.

In Chapter 2, the coupled circuit model of the BDFM has been presented.
Then, this model is used to derive the d− q vector model of the BDFM in a unified
reference frame. The d-axis was aligned with the power winding flux. Additionally,
basic notions of the transformation from the natural reference frame to the d − q
reference frame in which machine parameters and variables have constant values in
the steady-state have been presented.

In Chapter 3, a small signal mathematical model for the BDFM in generation
mode has been proposed. The linearisation has been done around an operating
point and the BDFM has been considered connected to the grid. The proposed
model is used to derive a control model for the BDFM which has been verified by
simulations in Matlab/Simulink environment as well as by some experiments.

In Chapter 4, the developed mathematical model in Chapter 3 has been used
to investigate the stability of the BDFM under unbalanced grid voltage conditions.
The stability is done for a wide speed range, and under parameters variation.

In Chapter 5, the control model of the BDFM has been used to develop two
control strategies for the BDFM: a PI controller and a robust controller. The coef-
ficients of the PI controller are calculated using Naslin’s method, and the robust
controller is calculated by minimising the H∞-norm of the weighted mixed sens-
itivity. Simulation validation on the non-linear BDFM-based wind turbine model
has been conducted, and comparison between the two proposed control schemes
has been given.

Finally, in Chapter 6, the main findings and conclusions together with propos-
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itions for future work have been cited.

After these six Chapters, an Appendix is presented. The purpose of having
an Appendix is mainly to smooth the thesis readability where bulky equations are
presented in it.

In addition to these Chapters and the Appendix, a worthwhile list of refer-
ences pertinent to the subjects treated in the thesis is given under the heading
‘Bibliography’.



Chapter 2

Vector Model of the BDFM

In this chapter we will present the dynamic model of the BDFM. The dynamic
model is often used to express and model the behaviour of a machine over time. Like
all three-phase electrical machines, the induction machine can be simply modelled
by two orthogonal components rather than by what is familiar, three sinusoidal
components [3, 52–54]. Given that the BDFM had several independent reference
frames: a reference frame linked to the first stator, a reference frame linked to
the second stator and a reference frame linked to the rotor, its modelling remains
difficult.

2.1 Coupled Circuit Model of the BDFM

To simplify the model of the BDFM, we call on simplifying assumptions perpetually
used. They are briefly described by [55]:

• Constant air gap;

• Neglecting of: conductors heating, notches effect, ferromagnetic losses, iron
losses and skin effect;

• The windings of each stator are identical, distributed sinusoidally and spa-
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tially displaced by 120o;

• Unsaturated magnetic circuit with fixed permeability.

2.1.1 Electrical equations

The equations of the voltages of the two stators and the rotor are obtained by
Kirchhoff and Faraday’s laws:

vabcp = Rpiabcp + pϕabcp (2.1)

vabcc = Rciabcc + pϕabcc (2.2)

vabcr = Rriabcr + pϕabcr (2.3)

where

fabcp =
[
fap fbp fcp

]T

fabcc =
[
fac fbc fcc

]T

fabcr =
[
far fbr fcr

]T

and p represents the derivative operation d

dt

The fluxes vector is related to the currents vector by the non-stationary induct-
ance matrix as follows:



ϕabcp

ϕabcc

ϕabcr


=



Lp 0
(3×3)

Lpr

0
(3×3)

Lc Lcr

Lrp Lrc Lr


·



iabcp

iabcc

iabcr


(2.4)
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where inductances of the coils are given by:

Lp =



Llp Lmp Lmp

Lmp Llp Lmp

Lmp Lmp Llp


(2.5)

Lc =



Llc Lmc Lmc

Lmc Llc Lmc

Lmc Lmc Llp


(2.6)

Lr =



Llr Lmr Lmr

Lmr Llr Lmr

Lmr Lmr Llr


(2.7)

Lpr = [Lrp]T = Lpr



cos θrp cos
(
θrp + 2π

3

)
cos

(
θrp − 2π

3

)
cos

(
θrp − 2π

3

)
cos θrp cos

(
θrp + 2π

3

)
cos

(
θrp + 2π

3

)
cos

(
θrp − 2π

3

)
cos θrp


(2.8)

Lcr = [Lrc]T = Lcr



cos θrc cos
(
θrc + 2π

3

)
cos

(
θrc − 2π

3

)
cos

(
θrc − 2π

3

)
cos θrc cos

(
θrc + 2π

3

)
cos

(
θrc + 2π

3

)
cos

(
θrc − 2π

3

)
cos θrc


(2.9)

In the above inductances equations, Llp, Llc and Llr are leakage inductances and
Lmp, Lmc and Lmr are magnetising inductances of power winding, control winding,
and rotor, respectively. θrp and θrp are the angular position (electric angle) related
to pp and pc pole-pair, respectively.
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2.1.2 Mechanical and electromechanical equations

In order to complete the model of the BDFM, a mechanical dynamic model is given
below.

The coenergy is given by:

Wc = 1
2

[
iTabcp iTabcc iTabcr

]
·



ϕabcp

ϕabcc

ϕabcr


(2.10)

The partial derivative of the coenergy with respect to the mechanical angle gives
the electromagnetic torque:

Tem = ∂Wc

∂θr
(2.11)

= 1
2

[
iTabcp iTabcc iTabcr

]
· d
dθr





Lp 0 Lpr

0 Lc Lcr

Lrp Lrc Lr




·



iabcp

iabcc

iabcr


(2.12)

As long as Lpr = [Lrp]T and Lcr = [Lrc]T , and Lp, Lc and Lr are constants,
the electromagnetic torque can be described as:

Tem = iTabcp
∂Lpr

∂θr
iabcr︸ ︷︷ ︸

Temp

+ iTabcc
∂Lcr

∂θr
iabcr︸ ︷︷ ︸

Temc

(2.13)

The rotor angular velocity of the generator is related to the electromagnetic
torque by the fundamental equation of the dynamics (Newton differential equation
of motion) [56]:

J
dωr
dt

= Tm + Tem −B · ωr (2.14)
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where J is the total inertia of the rotor and in some cases the connected load, Tm
is the mechanical torque, ωr is the angular speed of the rotor.

2.1.3 Active and reactive power equations

The instantaneous active and reactive power of the power winding and control
winding of the BDFM are given by the following relationships:

Pp = vapiap + vbpibp + vcpicp (2.15)

Qp = 1√
3
(
vcbpiap + vacpibp + vbapicp

)
(2.16)

where vxyz is the voltage phase to phase which is described as:

vxyz = vyz − vxz. (2.17)

2.2 d− q Model of the BDFM

The model of the BDFM given in the previous section contains sinusoidal quantities.
The manipulation of these quantities is very difficult, especially in the case where
we are designing a corrector. In order to circumvent this obstacle, a three-phase to
two-phase transformation has been used, that of Park.

2.2.1 Basics of d− q transform and space vector

The idea of a reference change is to transform a sinusoidal quantity in a reference
frame into a constant quantity in another reference frame. This transformation is
the superposition of two consecutive transformations.

The first is to transform the three-phase sinusoidal (electric) variables from the
fixed natural reference frame a − b − c to a two-phase sinusoidal quantities in a
fixed reference frame also and orthogonal called α − β as illustrated in Fig. 2.1.
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This transformation is known as ‘Clarke transformation’, or more commonly ‘α−β
transformation’. The space vector (also known as space phasor) of the three-phase
power winding voltage is described as:

v̄αβp = 2
3
(
vap + vbp · a+ vbp · a2

)
(2.18)

where a = e
2
3π, and the space vector can be represented by the following complex

form:
v̄αβp = vαp + vβp (2.19)
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Fig. 2.1: Clarke transformation.

Note The power winding voltage is used as an example to explain how does it
work. In fact, the α − β transform (also Park transformation which we will show
after) is applicable to all electric variables including voltages, currents and fluxes
of the power winding, the control winding and the rotor. ß
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Matrix form of the α− β transformation can be written as:



vαp

vβp

v0p


= 2

3



1 −1
2

1
2

0
√

3
2 −

√
3

2
1
2

1
2

1
2


·



vap

vbp

vcp


(2.20)

where v0p is the zero sequence or the homopolar component.

Note If we assume that the three-phase system is symmetric, so the zero sequence
is always null:

v0p = 1
3 (vap + vbp + vcp)︸ ︷︷ ︸

=

0

The present dissertation concentrates only on symmetrical systems. For the sake
of simplicity, the rest mathematical developments of this dissertation will omit the
zero sequence. ß

Clarke and reverse Clarke transformations can be described as:


vαp

vβp

 = 2
3


1 −1

2
1
2

0
√

3
2 −

√
3

2

 ·



vap

vbp

vcp


(2.21)



vap

vbp

vcp


=



1 0

−1
2

√
3

2

−1
2 −

√
3

2


·


vαp

vβp

 (2.22)

The second is to convert electrical variables from the fixed orthogonal axis
system α − β to an arbitrary rotating orthogonal axis system d − q as shown in
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Fig. 2.2. This transformation is known as ‘Park transformation’ and the angle
θ between the α axis and the d axis is known as Park’s angle. The coordinate
transformation from α− β to d− q is given by:

v̄dqp = v̄αβpe
−θ (2.23)
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Fig. 2.2: Park transformation.

Similarly, space vector can be represented by the following complex form:

v̄dqp = vdp + vqp (2.24)

where d refers to the direct component and q refers to the quadrature component.

Park and reverse park transformations can be written in matrix form as follows:


vdp

vqp

 =


cos (θ) sin (θ)

−sin (θ) cos (θ)

 ·

vαp

vβp

 (2.25)


vαp

vβp

 =


cos (θ) −sin (θ)

sin (θ) cos (θ)

 ·

vdp

vqp

 (2.26)

The combination of Clarke and Park transformations in one transformation
leads to the well known ‘d − q transformation’ which is used to transform three-
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phase sinusoidal variables into two-phase constant variables in steady-state as long
as the rotating speed of the d − q reference frame equals to the power winding
frequency (in this case the, d − q reference is called the ‘synchronous reference
frame’). Combining Eqs. (2.21) and (2.25) it results into:


vαp

vβp

 = 2
3


cos (θ) cos

(
θ − 2π

3

)
cos

(
θ + 2π

3

)
−sin (θ) −sin

(
θ − 2π

3

)
−sin

(
θ + 2π

3

)


︸ ︷︷ ︸
T(θ)

·



vap

vbp

vcp


(2.27)

The reverse d− q transform can be obtained using Eqs. (2.22) and (2.26):



vap

vbp

vcp


=



cos (θ) −sin (θ)

cos
(
θ − 2π

3

)
−sin

(
θ − 2π

3

)
cos

(
θ + 2π

3

)
−sin

(
θ + 2π

3

)


︸ ︷︷ ︸

T−1(θ)

·


vαp

vβp

 (2.28)

The angular position θ in the transformation T and its reverse T−1 is related
with the angular speed ω by the following relation:

θ = ωt+ θ0 (2.29)

where ω refers to the angular speed at which the corresponding reference α − β is
seeing the reference d− q turns in the positive direction in space.

The superiority of choosing the power winding synchronous reference frame,
more precisely relating the d axis to the power winding flux, can be justified by the
possibility of controlling independently the active and reactive power.

Due to the fact that the BDFM has two separate three-phase electrical windings,
the rotor is having two reference frames as presented in Fig. 2.3 [6, 50].
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Fig. 2.3: Rotor reference frames.

Figure 2.4 presents schematically reference frames of the BDFM [57].
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Fig. 2.4: Different reference frames of the BDFM (electrical angles).

As shown in Fig. 2.4, there are four main reference frames: (i) the stationary
reference frame related to the power winding α− βp, (ii) the control winding syn-
chronous reference frame dc − qc which rotates at the speed (pp + pc)ωr, (iii) the
synchronous reference frame d − q which rotates at the grid pulsatance (electrical
angular speed) ωp and (iv) the rotor synchronous reference frame dr − qr which
rotates at the speed ppωr.
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2.2.2 Electrical equations

By applying the d−q transform (2.27) on the power winding voltage equation (2.1)
yields:

vdqp = T(θp)vabcp

= T(θp) (Rpiabcp + pϕabcp)

= T(θp)
(
RpT−1(θp)idqp + d

dt

(
T−1(θp)ϕdqp

))

= Rpidqp + T(θp)
(
T−1(θp)

d

dt
ϕdqp + d

dt

(
T−1(θp)

)
ϕdqp

)

= Rpidqp + pϕdqp + T(θp)
d

dt

(
T−1(θp)

)
ϕdqp

(2.30)

Note The writing vdqp is used instead of


vdp

vqp

 to reduce equations’ size, and

will be considered later with other variables. ß

The time derivative of T−1 is calculated as follows:

d

dt
T−1(θp) = d

dt



sin(θp) cos(θp)

sin
(
θp − 2π

3

)
cos

(
θp − 2π

3

)
sin

(
θp + 2π

3

)
cos

(
θp + 2π

3

)



= ωp



cos (θp) −sin(θp)

cos
(
θp − 2π

3

)
−sin

(
θp − 2π

3

)
cos

(
θp + 2π

3

)
−sin

(
θp + 2π

3

)



(2.31)
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Since:

2∑
k=0

sin2
(
x− (k − 1) 2π

3

)
=

2∑
k=0

cos2
(
x− (k − 1) 2π

3

)
= 3

2
2∑

k=0

(
sin

(
x− (k − 1) 2π

3

)
· cos

(
x− (k − 1) 2π

3

))
= 0

(2.32)

the following can be written:

T(θp)
d

dt

(
T−1(θp)

)
=


0 −ωp

ωp 0

 (2.33)

Thus, the power winding voltage equation can be expressed by the following
complex notation:

v̄dqp = Rpīdqp + pϕ̄dqp + jωpϕ̄dqp (2.34)

Similarly for control winding and rotor voltage equations:

v̄dqr = Rr īdqr + pϕ̄dqr + j (ωp − ppωr) ϕ̄dqr (2.35)

v̄dqc = Rcīdqc + pϕ̄dqc + j (ωp − (pp + pc)ωr) ϕ̄dqc (2.36)

Using the d− q transformation on the power winding flux equation leads to:

ϕdqp = T (θp)
(
LpT−1 (θp) idqp + LprT−1 (θr) idqr

)
(2.37)


ϕdp

ϕqp

 =


Llp − Lmp 0

0 Llp − Lmp

 ·

idp

iqp

+


3
2Lpr 0

0 3
2Lpr

 ·

idr

iqr

 (2.38)

Therefore, fluxes equations can be expressed as:

ϕdqp = Lpidqp +Mpidqr (2.39)
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ϕdqc = Lcidqc +Mcidqr (2.40)

ϕdqr = Lridqr +Mpidqp +Mcidqc (2.41)

where Lx = Llx − Lmx and Mx = 3
2Lxr and x could be p for power winding, c

for control winding or r for rotor.

2.2.3 Mechanical equations

By applying the transformation (2.27) on the electromagnetic torque equation given
by Eq. (2.13), this leads to:

Temp = iTabcp
∂Lpr

∂θr
iabcr

= iTdqp
(
T−1(θp)

)T ∂Lpr

∂θr
T−1(θr)idqr

= 3
2ppMp (iqpidr − idpiqr)

(2.42)

Temc = 3
2pcMc (iqcidr − idciqr) (2.43)

Tem = Temp + Temc (2.44)

2.2.4 Active and reactive power equations

The active and reactive powers of the BDFM are expressed in the reference d − q
by:

Pp = vapiap + vbpibp + vcpicp

= vTabcpiabcp

= vTdqp
(
T−1(θp)

)T
T−1(θp)idqp

= 3
2 (vdpidp + vqpiqp)

(2.45)
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Qp = 1√
3
(
vcbpiap + vacpibp + vbapicp

)

= 1√
3
vTabcp



0 −1 1

1 0 −1

−1 1 0


iabcp

= 1√
3
vTdqp

(
T−1(θp)

)T


0 −1 1

1 0 −1

−1 1 0


T−1(θp)idqp

= 3
2 (vqpidp − vdpiqp)

(2.46)

2.3 Conclusions

This chapter describes the three-phase model of the BDFM, the voltages equations,
the fluxes equations, the powers equations, the electromagnetic torque equation as
well as the shaft equation. This a− b− c model or coupled circuit model is used to
extract a two-phase model, called the d − q model. The transformation from the
natural reference to the Park reference is briefly described.



Chapter 3

Small-Signal Model of the BDFM

The BDFM d − q model given in the previous chapter as well as in all previously
published works have affine non-linearities, and do not reflect a direct relationship
between the input which is the control winding and the output which is the power
winding. Therefore, this model is not serviceable for control purposes. In order to
overcome these disadvantages, we propose in this chapter a small signal mathemat-
ical model giving a direct relation between the input and the output of the BDFM
when it works in generation mode connected to the grid. The input is the voltage
vector of the control winding, and the output is the current vector produced by the
BDFM and transmitted to the grid. Thanks to this developed model, we can (i)
study the stability of the BDFM, (ii) reduce the model of the BDFM by the existing
aggregation methods, (iii) synthesise controllers which allow the regulation of the
power produced by the BDFM and (iv) implement optimal and robust control laws.
As we will show, and has been stated in several studies such as [58], the obtained
model for this type of machines is high order of multivariable structure and strong
coupling effect [59].
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3.1 Review of the BDFM Modelling

In the mid of 1960s, Smith developed for the first time a steady-state model and
an equivalent circuit for the Twin Stator Induction Machine (TSIM). The TSIM
is similar to the cascaded DFIM but the stators have equivalent number of pole-
pairs, i.e. the magnetic separation is spatial instead of using different number of
pole-pairs [60, 61]. In 1991, Li et al. proposed for the first time a dynamic model
for their BDFM prototype and showed performance results by simulation [62–64].
The stator of their BDFM was composed of 3 pole-pairs for the power winding and
1 pole-pair for the control winding. Since the appearance of the initial dynamic
model of the BDFM, a lot of interest was brought on this subject.

In 1994, Li et al. used the two axes BDFM model to derive an equivalent circuit
for the machine, and also to consider the steady-state performances in synchronous
mode [65]. In the same year, Zhou and Spée developed a synchronous reference
frame model for the BDFM and used it to develop a decoupled torque controller [66].
The developed model has the advantage that the d and q quantities become constant
quantities at steady-state but the BDFM was considered as two subsystems.

In 1995, Boger et al. used the d− q model of the BDFM of [65] to generalise it
for any given pole-pairs configuration [67]. The model was validated experimentally
but their starting point was an assumed configuration nevertheless.

In 1996 and 1997, Ferreira, and Williamson et al. contributed on the modelling
of the BDFM in which they presented a mathematical model of the BDFM based
on generalised harmonic analysis [68, 69]. This model is subsequently validated by
experimentation for synchronous operation in another paper [70].

In 2004, Oliveria et al. presented a finite element model for the BDFM which al-
lows to simulate it with different rotor bars configurations [71]. Meanwhile, Roberts
presented in his PhD thesis a general study on the BDFM [72]. He gave a method
to calculate the parameters of the equivalent circuit of the BDFM with a pre-
cious discussion, and he also presented several models for the BDFM and are: The
coupled-circuit model; the d− q model; the reduced d− q model and the equivalent
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circuit model. The main findings on the electrical equivalent circuit and parameter
estimation were published a year later by Roberts et al. in [73].

In 2006, Poza et al. developed an interesting dynamic vector model of the
BDFM [74]. Indeed, the work was part of the results of Poza’s PhD thesis [75],
which had been being published three years ago. The developed dynamic vector
model was in a unified reference frame system and the rotor was nested loop rotor
with both one loop per nest and multiple loops per nest. But no details were
presented for the case of multiple loops per nest. Therefore, Barati et al. generalised
the BDFM dynamic vector model of rotor of multiple loops per nest in 2011 in
[76]. The model was verified by comparison with the coupled circuit model and
experiments as well.

Two years later, Cárdenas et al. presented a mathematical model of the cascaded
DFIM based on small signal approach. The model was good for control purposes,
but no details were provided. In the meantime, Roberts et al. developed a model-
reduction technique which allows to only one d−q pair of rotor to be derived instead
of the conventional multiple d− q pairs [77].

In 2016, Han et al. developed a spiral vector model of the dual-stator brushless
doubly-fed machine (DSBDFM) [78]. The method of modelling is generalised to well
apply to any alternating current machine with arbitrary winding layout. The new
DSBDFM consists of three parts: an outer stator with three-phase power windings,
an inner stator with three-phase control windings, and a special rotor. The rotor
consists of a non-magnetic support with dual-layer iron cores with balanced three-
phase windings on each layer. The spiral vector model can be directly used to derive
the vector model from the winding layout and symmetry of the machine, rather
than from the coupled-circuit model using space vector and d − q transformation.
Experimental validation has been provided for the steady-state, and demonstrates
the developed modelling method under all possible operation modes.

Other models of the BDFM which appear in the literature including models
based on the magnetic equivalent circuit [38] and models based on the finite element
approach [34] are not usable for control purposes, thus, they are not much sited in



Small-Signal Model of the BDFM 28

this dissertation.

Along the line of research, it has been shown that the BDFM is having complex
behaviour and hence linearisation is sought.

3.2 Small Signal Model of the BDFM

The principle of the use of the BDFM in electricity generation by variable speed
wind turbines is shown in Fig. 3.1. In this variable speed configuration, the control
winding is fed by a bidirectional converter while the power winding is directly
connected to the power grid.

 

Bidirectional 
Converter 

Power 
winding Grid 

Control 
winding 

 BDFM 

Wind 

Gear box 

Fig. 3.1: Conceptual diagram of a BDFM-based wind turbine.

Based on the set of electromagnetic equations of the BDFM written in the
natural reference frame a − b − c, the model of the BDFM aligned to the power
winding flux and written in the d − q reference frame is given by the following
expressions:


vdp

vqp

 =


Rp 0

0 Rp



idp

iqp

+ d

dt


ϕdp

ϕqp

+


0 −ωp

ωp 0



ϕdp

ϕqp

 (3.1)
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
vdc

vqc

 =


Rc 0

0 Rc



idc

iqc

+ d

dt


ϕdc

ϕqc

+


0 −α

α 0



ϕdc

ϕqc

 (3.2)


vdr

vqr

 =


Rr 0

0 Rr



idr

iqr

+ d

dt


ϕdr

ϕqr

+


0 −β

β 0



ϕdr

ϕqr

 (3.3)


ϕdp

ϕqp

 =


Lp 0

0 Lp



idp

iqp

+


Mp 0

0 Mp



idr

iqr

 (3.4)


ϕdc

ϕqc

 =


Lc 0

0 Lc



idc

iqc

+


Mc 0

0 Mc



idr

iqr

 (3.5)


ϕdr

ϕqr

 =


Lr 0

0 Lr



idr

iqr

+


Mp 0

0 Mp



idp

iqp

+


Mc 0

0 Mc



idc

iqc

 (3.6)

where
α = ωp − (pp + pc)ωr (3.7)

β = ωp − ppωr (3.8)

where α represents the relative angular speed between the d− q reference and the
control winding reference in a pc-type pole-pair distribution, and β represents the
relative angular speed between the d − q reference and the rotor reference in a
pp-type pole-pair distribution [74].

Now, substituting fluxes Eqs. (3.4), (3.5) and (3.6) into voltages Eqs. (3.1),
(3.2) and (3.3), it results into:


vdp

vqp

 =


Rp + pLp −ωpLp

ωpLp Rp + pLp



idp

iqp

+


pMp −ωpMp

ωpMp pMp



idr

iqr

 (3.9)
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
vdc

vqc

 =


Rc + pLc −αLc

αLc Rc + pLc



idc

iqc

+


pMc −αMc

αMc pMc



idr

iqr

 (3.10)


vdr

vqr

 =


Rr + pLr −βLr

βLr Rr + pLr



idr

iqr

+


pMp −βMp

βMp pMp



idp

iqp



+


pMc −βMc

βMc pMc



idc

iqc


(3.11)

Seeing the non-linearity in the previous model, a small signal linearisation must
be considered.

It is known that the derivative of a given function f at a point x0 (we assume
that f is defined in IR and that the derivative of f exists at x0) can be defined as
a limit of difference quotients as follows:

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

(3.12)

By deleting the limit sign and x is near x0, the relation between the left and right
sides of the foregoing equation will be no more an equality but an approximation:

f ′(x0) ≈ f(x)− f(x0)
x− x0

(3.13)

Solving for f(x) from the previous approximation results in:

f(x) ≈ f(x0) + f ′(x0) · (x− x0) (3.14)

This equation is the linearisation of f around the point x0. In fact, Taylor series
give the same approximation when higher order terms can be neglected.
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By applying this linear approximation to the dynamic system ẋ = f(x) yield:

ẋ = f(x) ≈ f(x0) + f ′(x0) · (x− x0) (3.15)

where x0 refers to the equilibrium point and it is also known as the critical point
or stationary point.

The equilibrium solution is defined as:

ẋ0 = f(x0) ∆= 0 (3.16)

Rearranging Eq. (3.15) gives:

ẋ− ẋ0 ≈ f(x0) + f ′(x0) · (x− x0) (3.17)

Now supposing that the difference between x and x0 is ∆x, i.e. x = x0 + ∆x ,
so, Eq. (3.17) can be expressed as:

∆ẋ ≈ f ′(x0) · (∆x) (3.18)

As can be seen from the last equation, the same signals turned to small signals
and the non-linear dynamic model turned to a linear time-invariant model which
is known as small signal model. For multivariable system, the component f ′(x0)
will be the Jacobian matrix and the component x contains the state vector and the
input vector as well.

Now if we look at the set of Eqs. (3.9), (3.10) and (3.11) describing the BDFM
non-linear model, we would observe that currents depend on constant electrical
parameters. The only two variables which introduce non-linearity into the BDFM
model are α and β, because they are related to the rotor angular speed as shown
in Eqs. (3.7) and (3.8).

Commonly, the rotor angular speed is treated as a quasi-static value in the
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phase of determination of the electrical variables dynamics. This assumption is
typically valid since the mechanical dynamics is very slow compared to the electrical
dynamics. However, it is possible that situations arise where the rotor speed has
oscillations of small amplitude but relatively high frequency such as synchronism
faults and mechanical vibrations. In this case the separation of mechanical and
electrical dynamics will not be possible, and therefore, the dynamic system will
remain non-linear. In this dissertation, such phenomena are not considered.

A simple solution exists in the literature to deal with this kind of non-linearities
known as the ‘small signal analysis’ of the machine, that is to say considering
changes of variables around a given operating point.

In case of wind energy conversion system working around an operating point,
the angular speed of the rotor can be written as:

ωr = ωr0 + ∆ωr (3.19)

As said before, mechanical variations can be neglected in front of electrical
variations, thus, the following can be written:

∆ωr ≈ 0 (3.20)

The linearisation of the system of Eqs. (3.9), (3.10) and (3.11) around an
operating point gives:


∆vdp

∆vqp

 =


Rp + pLp −ωpLp

ωpLp Rp + pLp




∆idp

∆iqp



+


pMp −ωpMp

ωpMp pMp




∆idr

∆iqr


(3.21)
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
∆vdc

∆vqc

 =


Rc + pLc −αLc

αLc Rc + pLc




∆idc

∆iqc



+


pMc −αMc

αMc pMc




∆idr

∆iqr


(3.22)


∆vdr

∆vqr

 =


Rr + pLr −βLr

βLr Rr + pLr




∆idr

∆iqr



+


pMp −βMp

βMp pMp




∆idp

∆iqp

+


pMc −βMc

βMc pMc




∆idc

∆iqc


(3.23)

where
α = ωp − (pp + pc)ωr0 (3.24)

β = ωp − ppωr0 (3.25)

In order to fulfil the linearisation in a correct way, we have treated Eqs. (3.9),
(3.10) and (3.11) by considering the angular velocity ωp of the rotating d − q ref-
erence frame has a constant value independent of the rotor speed. In this study,
the frequency of the grid is taken constant, 50 Hz. The Laplace transform of Eqs.
(3.21), (3.22) and (3.23) is given as:


∆Vdp

∆Vqp

 = [Ap]


∆Idp

∆Iqp

+ [Bp]


∆Idr

∆Iqr

 (3.26)


∆Vdc

∆Vqc

 = [Ac]


∆Idc

∆Iqc

+ [Bc]


∆Idr

∆Iqr

 (3.27)
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
0

0

 = [Ar]


∆Idr

∆Iqr

+ [Arp]


∆Idp

∆Iqp

+ [Arc]


∆Idc

∆Iqc

 (3.28)

where

[Ap] =


Rp + sLp −ωpLp

ωpLp Rp + sLp

 (3.29)

[Bp] =


sMp −ωpMp

ωpMp sMp

 (3.30)

[Ac] =


Rc + sLc −αLc

αLc Rc + sLc

 (3.31)

[Bc] =


sMc −αMc

αMc sMc

 (3.32)

[Ar] =


Rr + sLr −βLr

βLr Rr + sLr

 (3.33)

[Arp] =


sMp −βMp

βMp sMp

 (3.34)

[Arc] =


sMc −βMc

βMc sMc

 (3.35)

‘s’ represents the Laplace variable. The rotor voltage of the BDFM is zero, as
long as the BDFM’s rotor is nested loop (squirrel cage), where cage voltage is zero
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for all modes of operation.

Using Eq. (3.28), the variation of the control winding current can be expressed
by: 

∆Idc

∆Iqc

 = −[Arc]−1

[Ar]


∆Idr

∆Iqr

+ [Arp]


∆Idp

∆Iqp


 (3.36)

By replacing Eq. (3.36) in Eq. (3.27), we may arrive to:


∆Vdc

∆Vqc

 = − [Ac] [Arc]−1 [Arp]


∆Idp

∆Iqp



+
(
[Bc]− [Ac] [Arc]−1 [Ar]

)


∆Idr

∆Iqr


(3.37)

Using Eq. (3.26), the variation of the rotor current can be written by:


∆Idr

∆Iqr

 = [Bp]−1




∆Vdp

∆Vqp

− [Ap]


∆Idp

∆Iqp


 (3.38)

Now the combination of Eqs. (3.37) and (3.38) allows writing the power winding
current as a linear function of the control winding and power winding voltages as
follows: 

∆Idp

∆Iqp

 = [Gc]


∆Vdc

∆Vqc

+ [Gp]


∆Vdp

∆Vqp

 (3.39)

where

[Gc] =
[
[Ac][Arc]−1

(
[Ar][Bp]−1[Ap]− [Arp]

)
− [Bc][Bp]−1[Ap]

]−1
(3.40)
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[Gp] = [Gc]
(
[Ac][Arc]−1[Ar]− [Bc]

)
[Bp]−1 (3.41)

[Gc] and [Gp] are transfer matrices which define the BDFM as a four-input-
two-output multivariable linear system having the following structure:


∆Idp

∆Iqp

 =


Gc11(s) Gc12(s) Gp11(s) Gp12(s)

−Gc12(s) Gc11(s) −Gp12(s) Gp11(s)

 ·



∆Vdc

∆Vqc

∆Vdp

∆Vqp


(3.42)

where

[Gc(s)] =


Gc11(s) Gc12(s)

−Gc12(s) Gc11(s)

 (3.43)

[Gp(s)] =


Gp11(s) Gp12(s)

−Gp12(s) Gp11(s)

 (3.44)

ComponentsGc11(s), Gc12(s), Gp11(s) andGp12(s) of the transfer matrices [Gc(s)]
and [Gp(s)] depend on the nominal rotational speed of the rotor and the electrical
parameters of the BDFM, and are given by:

Gc11 (s) = bc1 (s)
a (s) (3.45)

Gc12 (s) = bc2 (s)
a (s) (3.46)

Gp11 (s) = bp1 (s)
a (s) (3.47)

Gp12 (s) = bp2 (s)
a (s) (3.48)

where a(s), bc1(s), bc2(s), bp1(s) and bp2(s) are polynomials of ‘s’:
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a (s) = a6s
6 + a5 · s5 + a4 · s4 + a3 · s3 + a2 · s2 + a1 · s+ a0 (3.49)

bc1 (s) = bc15 · s5 + bc14 · s4 + bc13 · s3 + bc12 · s2 + bc11 · s+ bc10 (3.50)

bc2 (s) = bc24 · s4 + bc23 · s3 + bc22 · s2 + bc21 · s+ bc20 (3.51)

bp1 (s) = bp15 · s5 + bp14 · s4 + bp13 · s3 + bp12 · s2 + bp11 · s+ bp10 (3.52)

bp2 (s) = bp24 · s4 + bp23 · s3 + bp22 · s2 + bp21 · s+ bp20 (3.53)

Coefficients ai, bx1j and bx2k where i go from 0 to 6, j go from 0 to 5, k go from
0 to 4, and x can be either c or p, are defined in the appendix as functions of the
electrical parameters of the BDFM and the operating speed.

The functional diagram of the BDFM is illustrated in Fig 3.2.

Fig. 3.2: Block diagram of the BDFM.

As can be seen, the BDFM model is multivariable four inputs and two outputs.
The four inputs are the direct and quadrature components of the control and power
winding voltages, and the two outputs are the direct and quadrature components
of the power winding current. It is noteworthy to mention that the developed
mathematical model of the BDFM is usable to well describe the dynamic of the
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BDFM for wind power generation as well as for adjustable speed drive. For the
latter case, i.e. adjustable speed drive, the primary winding of the BDFM (power
winding) could be fed by converter providing variable voltage but, nevertheless,
constant frequency.

3.3 Control Model of the BDFM

The small signal mathematical model of the BDFM given in the Eq. (3.42) defines
a multivariable linear structure in the Laplace domain. However, because of the
BDFM is considered as generator connected to the grid, the voltage comes in to
the BDFM from the power winding side (the change in the power winding voltage)
could be considered as a perturbation, and this could only happen under unbalanced
grid voltage conditions. This model has been considered in the next chapter for
stability analysis.

Assuming that the grid is balanced and has a constant voltage and constant
frequency, changes in the power winding voltage can be neglected in the BDFM
small signal model [79, 80]: 

∆vdp

∆vqp

 ≈


0

0

 (3.54)

Thus, the small signal mathematical model of the BDFM represented in Eq.
(3.42) can be expressed as:


∆Idp

∆Iqp

 =


Gc11(s) Gc12(s)

−Gc12(s) Gc11(s)




∆Vdc

∆Vqc

 (3.55)

The BDFM small signal mathematical model in (3.55) describes the behaviour
of the BDFM in the vicinity of an operating point given by ωr0 and the derivative
terms ∆Vqc and ∆Vqc, and allows the possibility of implementing all tools and
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techniques made available by linear control theory for the design of convenient
controller for the BDFM generator. For this reason, we call the model in Eq.
(3.55), control model of the BDFM.

The functional diagram of the BDFM control model is illustrated by the follow-
ing figure.

Fig. 3.3: Block diagram of the BDFM control model.

3.4 Simulation Results

Simulation of the model developed in the previous section was done by Matlab
software. The electrical parameters used in the simulation are those of the prototype
of [74]. All of which are given in the following Table:

Tab. 3.1: Electrical parameters of the BDFM

Resistance
(Ω)

Self
inductance

(H)

Mutual
inductance

(H)

Pole-pairs
or Nests

Power winding 1.732 0.7148 0.2421 1

Control winding 1.079 0.1217 0.0598 3

Rotor 0.473 0.1326 4
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To examine the performance of the BDFM in all possible operating points, we
firstly started by calculating the static gains of the transfer matrix. These static
gains represent the steady-state of the BDFM and can be easily calculated by:

gainc11 = lim
s→0

Gc11(s) = lim
s→0

(∑5
i=0 bc1,i · si∑6
i=0 ai · si

)
= bc10

a0
(3.56)

gainc12 = lim
s→0

Gc12(s) = lim
s→0

(∑4
i=0 bc2,i · si∑6
i=0 ai · si

)
= bc20

a0
(3.57)

By replacing the values of the electrical parameters of the BDFM prototype
which are given in Table 3.1, it results into:

gainc11 = 2668020− 34522.8ωr0 + 105.938ω2
r0 − 0.0734712ω3

r0
6.21989 ∗ 108 − 19628800ωr0 + 204976ω2

r0 − 786.908ω3
r0 + ω4

r0
(3.58)

gainc12 = 1.51196 ∗ 107 − 289537ωr0 + 1383.61ω2
r0 − 1.95818ω3

r0
6.21989 ∗ 108 − 19628800ωr0 + 204976ω2

r0 − 786.908ω3
r0 + ω4

r0
(3.59)

The evolution of the static gains gainc11 and gainc12 depending on the rotational
speed of the rotor is shown in Fig. 3.4.
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Fig. 3.4: Static gains of Gc(s) with respect to ωr0.
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gainc11 and gainc12 are both elements of Gc(0). In fact, gainc11 is the gain
between the direct components ∆Vdp and ∆Idp, and between the quadrature com-
ponents ∆Vqp and ∆Iqp, however, gainc12 represents the coupling gain of Gc(0), i.e.
influence of the direct component on the quadrature one, and vice versa.

As can be seen in Fig. 3.4, the static gain of the coupling action is close to zero
around the synchronous speed, exactly at the speed 746.978 rpm which means that
the coupling effect is weak around the synchronous speed.

Moreover, gainc11 reaches its maximum value at 750.29 rpm with a gain of
0.37 which is very beneficial. However, gainc11 falls down rapidly as much as the
rotational speed of the rotor ωr0 is far from its synchronous value.

Figure 3.5 represents the direct and quadrature components of the power wind-
ing current with respect to the rotor speed. In this figure, we are supposing that
both direct and quadrature components of the control winding voltage are 1 V.
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Fig. 3.5: Produced currents with respect to ωr0.

As can be seen, the curves of ∆idp and ∆iqp are quasi-axially symmetric at a
speed near the synchronous one, 746.978 rpm, and having peaks around 750 rpm.
Moreover, the range where both of current components are positive is extremely
narrow starting from 688.56 rpm to 791.83 rpm, i.e. [−8.192%, 5.57733%]. This
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means that the prototype is only effective in a narrow speed range which is actually
less than 10%. Indeed, the prototype owner has noticed in several publications that
this prototype is for validation of theoretical findings and not optimised.

Using Eq. (2.45), change in the produced power can be written by:

∆Pp = 3
2 (vdp0∆idp + vqp0∆iqp) (3.60)

Figure 3.6 represents the produced power by the BDFM where it is fed by 22
V on the control winding and the grid has a constant value of 220 V.
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Fig. 3.6: Produced power with respect to ωr0.

As shown in Fig. 3.6, the more the rotor speed is far from the synchronous
speed, the more the produced power is of small magnitude. Moreover, the range
of speed which is beneficial is narrow and less than 10% around the synchronous
speed. This curve is similar to what we obtain using DFIM, but with less yield,
this is why numerous studies are concerned with the optimisation of the BDFM
design [81–86].

The step response of G(s) for different rotor speeds is mapped on Fig. 3.7.

In fact, the more the machine turns at a speed far from the synchronous speed,
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Fig. 3.7: Step response of the BDFM.

the more the amplitude of the produced current will be smaller. Moreover, we also
note that the BDFM at the synchronous speed behaves like a synchronous machine



Small-Signal Model of the BDFM 44

since the dynamic response of currents had the same shape as the step response of
a first-order system.

Obviously, the previous figures (Fig. 3.7) do not reflect the coupling effect
because the step of the input voltages start at the same time. In Fig. 3.8, the
input voltages are considered shifted so that we reach several cases of overlap.

The coupling effect has become clear because even though the input ∆vdc (∆vqc)
keep the same value and the current ∆idc (∆iqc) reached its steady-state, a variation
on ∆vqc (∆vdc) causes a change in ∆idc (∆iqc) which is not preferred, therefore,
control tasks of the BDFM will be difficult, and the use of a decoupling action will
be considered.

3.5 Experimental Results

In order to validate the proposed model, a test bench consisting of a 2.2 kW BDFM
driven by a direct current machine has been carried out in the Electrotechnical
Laboratory of Constantine located at Mentouri University of Constantine as shown
in Fig. 3.9. The power winding is connected to a local network and the control
winding is supplied by an IGBT inverter operating at a switching frequency of 10
kHz. This inverter is controlled by a dSPACE 1104 in Pulse Width Modulation
(PWM) mode. During our tests, the BDFM operates in open-loop.

Figures 3.10a and 3.10b show the measured power winding currents for a control
winding voltage step when the rotor turns at 500 rpm and their filtering, respect-
ively.

Figures 3.11a and 3.11b show the measured power winding currents for a control
winding voltage step when the rotor turns at the synchronous speed and their
filtering, respectively.

Figures 3.12a and 3.12b show the measured power winding currents for a con-
trol winding voltage step when the rotor turns at 1000 rpm and their filtering,
respectively.
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Fig. 3.8: Step response of the BDFM with shifted voltages.
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Fig. 3.9: Experimental test rig.

(a) (b)

Fig. 3.10: Power winding currents when ωr0=500 rpm.

At the right side in Figs. 3.10, 3.11 and 3.12 the currents are filtered by notch
filters. The filters are chosen based on the knowledge of the output signals frequency
which is 50 Hz.

Figure 3.13 represent the power winding current in the direct axis (Fig. 3.13a)
and the quadrature axis (Fig. 3.13b). As we can conclude, these responses comply
with those obtained by the proposed model. At the synchronous speed, the BDFM
behave like a first-order system, and for other operating speeds other than the
synchronous one, the BDFM behave like a second-order system or higher.
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(a) (b)

Fig. 3.11: Power winding currents when ωr0=750 rpm.

(a) (b)

Fig. 3.12: Power winding currents when ωr0=1000 rpm.

3.6 Conclusions

In this chapter, we have proposed a new mathematical model d − q complete for
the BDFM. The BDFM is considered as a generator connected to the grid. The
developed model is of multivariable structure connecting the outputs which are the
currents of the power winding with the inputs which are the voltages of the control
winding. The power generated by the BDFM is function of the nominal rotational
speed of the rotor.

In order to validate the proposed model, some simulations and tests on laborat-
ory prototypes were carried out. The obtained experimental and simulation results



Small-Signal Model of the BDFM 48

(a)

(b)

Fig. 3.13: Power winding currents in the reference d− q.

have shown that the dynamic and static behaviour of the BDFM depends on the
rotational speed of the rotor. Thus, at 750 rpm, the machine acts as a simple first
order system, while, at 500 and 1000 rpm, the machine acts as a higher order sys-
tem, a sixth order. For this reason, the control strategies proposed in the literature
cannot give good results. Based on the obtained results, we can conclude that:

• In closed-loop operation mode, when the rotor rotational speed is around 750
rpm, a simple PI controller is sufficient. But when the rotor rotational speed
varies, a more sophisticated control structure will be needed;

• The proposed model allows the application and design of available linear
control techniques, including robust control and optimal control;

• The BDFM must work on a range of speed of 10% or less around the syn-
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chronous speed, outside this range the machine is less beneficial;

• The BDFM has a strong coupling between the quadrant axes, which will
complicate its control tasks, and imposes the use of a decoupling action;

• The developed mathematical model is useful and usable during the design
phase to optimise the BDFMs’ efficiency.



Chapter 4

BDFM Stability Analysis

In Chapter 3 we have developed a new mathematical model of the BDFM, this
model will be used in this Chapter to study the stability of the BDFM [59].

4.1 Definition and Basics of Stability

Consider a continuous finite-dimensional system described by a first-order non-
linear vector differential equation:

ẋ = f(x) x ∈ IRn (4.1)

Definition 4.1.1. (Equilibrium point) A vector xe ∈ IRn is called an equilibrium
point or equilibrium state if:

f(xe) = 0 (4.2)

Note any equilibrium point can be brought back to the origin by a simple change
of variable X ←− x− xe. ß

Definition 4.1.2. (Simple, asymptotic, marginal and global asymptotic stability)
The equilibrium point xe of the system 4.1 is [52,87]:



BDFM Stability Analysis 51

stable if, for all ε > 0, there is r = r(ε), such as:

‖x(t = 0)‖ < r =⇒ ‖x(t)‖ < ε ∀t > 0 (4.3)

unstable, if not stable,
asymptotically stable, if stable and if r can be chosen such that:

‖x(t = 0)‖ < r =⇒ lim
t→∞

x(t) = 0 (4.4)

marginally stable, if stable without being asymptotically stable:

‖x(t = 0)‖ < r =⇒ (‖x(t)‖ < ε) ∧
(

lim
t→∞

x(t) 6= 0
)

∀t > 0 (4.5)

globally asymptotically stable, if asymptotically stable regardless of the initial state
vector x(t = 0):

‖x(t = 0)‖ <∞ =⇒ lim
t→∞

x(t) = 0. (4.6)

Practically, Lyapunov stability ensures that the trajectory will remain inside the
loop B(xe, ε) if the starting point belongs to a ball B(xe, r). Asymptotic stability
includes this property, but further specifies that any initialised trajectory in the
ball B(xe, r) converges to xe.

Figures 4.1 and 4.2 represent the geometric interpretation of different stability
definitions for a system of two state variables, x1 and x2.

In this chapter and by misuse of language, we speak about stability of the system
instead of talking about stability of the equilibrium point.

If the system is linear:

ẋ(t) = A(t) x ∈ IRn (4.7)

then the system is globally asymptotically stable (the equilibrium point being at
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Fig. 4.1: Geometric explanation of marginal and asymptotic stabilities.
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Fig. 4.2: Geometric explanation of instability and global asymptotic stability.

the origin) if all the eigenvalues of A are strictly negative, that is:

Re (λi(A)) < 0 i = 1, ..., n (4.8)

In fact, the eigenvalues of the state matrix A are the poles of the system transfer
function. Therefore, the study in this chapter is based on the position of the
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eigenvalues in the complex s-plane.

4.2 Review of the BDFM Stability Studies

In the published literature, the stability of the BDFM has been studied by many
authors. In 1979, Cook and Smith studied the stability of the cascaded DFIM
in synchronous operation using small signal analysis [88]. They concluded that
the cascaded DFIM has certain regions of instability in open-loop operation. Four
years later, the same authors used a linearised model of the cascaded DFIM to
study the effect of parameters change on the stability of the cascaded DFIM. They
demonstrated that the real part of the cascaded DFIM’s dominating poles depends
on the speed and the load [89].

In 1995, Li et al. analysed the stability characteristics of open-loop BDFM
at equilibrium points based on Floquet’s generalised theory [90]; They show by
simulation results a possible instability when the frequency of the control winding
is high, but their experimental results do not agree with those obtained by computer
simulation.

In 2005, Poza et al. studied the open-loop stability of a small signal model of
the BDFM in a unified reference frame [91], and showed that the stability zone
depends on the parameters of the machine. One year later, Sarasola et al. studied
the stability of the BDFM in closed-loop operation [92]. Their BDFM was operating
under scalar current control, and their experiments showed a stable behaviour over
the entire operating range.

It must be recognised that a contradiction arises between the arguments that
the BDFM could reach a wide range of stable open-loop operation [90], and those
the BDFM is conditionally stable in open-loop [88, 91]. From the view point of
control theory, although the disagreement, however, the closed-loop control is al-
ways necessary to increase the stability margin and improve the dynamic perform-
ance. Therefore, many researchers have become focused on closed-loop control
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schemes [79, 93, 94]. In these previous works, the absence of a clear mathematical
model led to weak analysis of the BDFM stability in generation mode, where the
analysis of the eigenvalues of the BDFM model cannot be carried out directly. In
this chapter, a study of the stability of the open-loop BDFM is carried out with
respect to the angular speed of the rotor on the one hand, and with respect to the
electrical parameters on the other hand.

4.3 BDFM Stability Analysis with Respect to

the Operating Point

The first step in the process of the stability analysis of the BDFM is the determ-
ination of the coefficients of the common denominator a(s) of the transfer matrix
G(s). The calculation’s result of the polynomial a(s) for a BDFM chosen according
to the rotational speed of the rotor is given by:

a(s) = 3.4067714 ∗ 10−6s6 + 0.0003763s5 + s4(0.0000579ω2
r0

− 0.0107027ωr0 + 1.02172) + s3(0.0039397ω2
r0 − 0.724582ωr0

+ 74.4223) + s2(0.0000545ω4
r0 − 0.0428108ω3

r0 + 16.893ω2
r0

− 2130.75ωr0 + 101607) + s(0.001285ω4
r0 − 1.00924ω3

r0 + 515.923ω2
r0

− 71585.9ωr0 + 3.67863× 106) + 5.38733ω4
r0 − 4239.33ω3

r0

+ 1.10427× 106ω2
r0 − 1.05747× 108ωr0 + 3.35086× 109

(4.9)

Since the polynomial is of sixth order and some coefficients are a function of the
rotor speed, so the position in the complex domain of the roots of a(s) evolves
accordingly and defines six different poles. Figure 4.3 shows the evolution of the
real part of the poles for a rotor speed from 0 rpm up to 1500 rpm (1500 rpm
represents the double of the synchronous speed), and Fig. 4.4 shows the evolution
of the imaginary part of the poles for a rotor speed ranging from 0 rpm up to 1500
rpm
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Fig. 4.3: Real part of the poles with respect to ωr0.
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Fig. 4.4: Imaginary part of the poles with respect to ωr0.

Indeed, for all possible values of the angular velocity of the rotor, the real part
of the poles is strictly negative, which indicates that the BDFM is asymptotically
stable in open-loop whatever the speed of operation ωr0. In addition, the variation
of the imaginary part of the poles indicates that the open-loop time response of the
BDFM model varies with respect to the value of ωr0.

4.4 BDFM Stability Analysis with Respect to

Electric Parameters Change

In this section, other simulations have been conducted; this is to study the influence
of electrical parameters change on the stability of the BDFM. Particular interest has
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been given to the effect of variations in rotor resistance and self-inductance, as these
parameters can undergo significant variations with rotor temperature increasing
during machine operation. [95–97]. The variation of parameter, x can be expressed
as:

x = x0 + ∆x (4.10)

In the following we use the relative uncertainty which is defined in percent by:

∆x(%) =
(
x

x0
− 1

)
100% (4.11)

With the same manner, the eigenvalues variation can be mapped with respect to
any parameter desired. Figures 4.5 and 4.6 mapped the real part of the BDFM
poles in function of variations in Rr and Lr, respectively, when the BDFM turn at
rated speed. Only ± 50% of variation in parameters is taken into account. As can
be seen, the stability of the BDFM is not altered by any variations in Rr . However,
if the stability is maintained for an increase of up to +50% in Lr , the machine
becomes open-loop unstable for a decrease beyond -16% in the rotor self-inductance
value.
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Fig. 4.5: Real part of the poles with respect to rotor resistance variations.

Figures 4.5 and 4.6 can be unified into one figure, Fig. 4.7, which represents the
area of stability of the BDFM with respect to variations in both Rr and Lr. The
plus mark, ‘+’ indicates that the corresponding pair (Rr, Lr) has at least one pole
with a positive real part, i.e. the BDFM is open-loop unstable. While the point
mark, ‘·’ indicates that all poles of the BDFM for the corresponding pair (Rr, Lr)
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(b) zoom of Fig. 4.6a

Fig. 4.6: Real part of the poles with respect to rotor inductance variations.

have a negative real part, i.e. the BDFM is open-loop stable.
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Fig. 4.7: Stability regions with respect to variations in the rotor self-inductance
and resistance.

Figure 4.7 shows that the rotor resistance variations don’t affect the stability of
the BDFM. But variations in the rotor self-inductance can destabilise the BDFM.
In order to make sure the BDFM stable, variations in Lr should not be under (-
16%) of its nominal value. However, in fault conditions (rotor bars broken) the
rotor electric parameters will decrease seriously, so the risk of being unstable will
rise dramatically.

Figures 4.8 and 4.9 represent the area of stability for variations in resistance and
self inductance of the stator power winding and stator control winding, respectively,
when the rotor turns at the synchronous speed.

As can be seen, variations in Rp don’t affect the stability of the BDFM, but a
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Fig. 4.8: Stability regions with respect to variations in the stator power winding
self-inductance and resistance.
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Fig. 4.9: Stability regions with respect to variations in the stator control winding
self-inductance and resistance.

decrease in Lp by -20%, Lc by -30% or Rc by -40% from their nominal value can
destabilise the BDFM. The decrease in stator electric parameters can be arrived not
only due to temperature variation, but also due to fault conditions (short-circuit
in electrical winding).

By knowing the position of the BDFM poles, the behaviour of any BDFM can
be predicted on the one hand. On the other hand, this approach compared to
other studies, gives the opportunity to the optimisation theory to take place, and
contribute before the construction phase to get an optimal BDFM.
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4.5 Conclusions

In this chapter, a stability analysis is achieved in open-loop operation of the BDFM.
This study is done for wide operating rotor speed, and for stators and rotor electric
parameters variation. The stability investigation of a selected benchmark BDFM
is based on the calculation of the eigenvalues of the open-loop BDFM system. The
obtained results indicate that the BDFM is stable over all speed range and, small
variations in the electrical parameters do not affect its stability. However, it has
also been shown that the BDFM can be unstable especially when one of the self-
inductances decreases seriously. A serious diminution in electrical parameters can
only happen in the case of short-circuit in the stator windings or, a break of some
rotor bars.



Chapter 5

Control of the BDFM

5.1 History of the BDFM Control

In the mid of 90s, several papers have been published on the control aspects of the
BDFM for both mode of operations generator and motor [25, 66,90,98–102]

In 1992, the first control algorithm for the BDFM was presented in a conference
by Brassfield et al. where they proposed a direct torque control [103]. Later, they
published their control strategy in [101].

In 1993, Zhou et al. improved the robustness of the direct torque controller by
means of model reference adaptive control [104]. In 1996, Zhou et al. proposed
rotor flux oriented control for the BDFM [99]. As an advantage they reduced
the computational complexity, however, their algorithm needs more measurements
compared to the field oriented control algorithm applied to conventional induction
machines. In the same year, Zhou et al. proposed a simplified algorithm of control
for the BDFM which is based on the field oriented control [100]. In 1997, Zhou et
al. implemented a rotor flux oriented control for the BDFM over narrow speed and
torque ranges [102].

Meanwhile Zhou’s work, Spee et al. in 1995, implemented a maximum power
point tracking control for the BDFM without the need of mechanical measurements
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[98].

In 2000, Munoz et al. developed a vector model of the TSIM, and used it to
perform two control structures, the scalar constant v/f and the vector control [105].
The stators had had dissimilar pole-pairs number, and both of them were feeding
by an inverter.

In 2002, Shoudao et al. proposed a fuzzy logic control strategy for the BDFM
using PID controller [106]. In the mean time, and using the d − q model of the
BDFM at that time, Poza et al. developed a vector control algorithm [107].

Later, a vector control for the BDFM is proposed by Poza in 2003 in [75] and
by Poza et al. in 2009 in [94]. The BDFM model used was the same published
in [74].

In the reference [75], the author proposed a cascade control structure of the
BDFM. Moreover, he presented an analysis of the BDFM stability. These results
have been validated by a prototype.

In 2008 and 2010, Shao et al. proposed a flux oriented control algorithm for the
BDFM and showed good performance [51,108].

In 2016, Chen et al. proposed an improved vector control for the BDFM under
unbalanced grid conditions [109]. The vector control strategy was based on the
proportional integral resonant controller (PI + R). The robustness of the proposed
control scheme under parameters uncertainties and variations is discussed.

During the same year, Cheng et al. presented an improved voltage compensation
method for DSBDFM-based standalone wind energy system to enhance the power
winding voltage quality which mainly focuses on the suppression of the unbalanced
fifth and seventh order harmonic voltages [110].

In 2017, Han et al. proposed a dual-electrical-port control scheme for cascaded
DFIM fed by two inverters in all its four-quadrant operation [111]. The proposed
control method is experimentally verified and demonstrates its effectiveness in re-
ducing rotor slip frequency and related core losses.



Control of the BDFM 62

In order to control the BDFM, we propose in this chapter the use of two different
controllers with different structures: a PI controller; and a robust controller.

5.2 PI Control of the BDFM

As can be seen, the BDFM model is a Multiple-Input Multiple-Output (MIMO)
system with high order transfer function matrix and highly coupled terms. Addi-
tionally, the model depends on the operating speed. To control this machine with
simple PI controllers, we adopted the use of decoupling action.

5.2.1 Decoupling matrix calculation

To realise a perfect decoupling between the direct components and quadrature
components, we propose the next decoupling matrix which has the following form
[79,80]:

H(s) =


Gc11(s) −Gc12(s)

Gc12(s) Gc11(s)

 =


bc1(s)
a(s) −bc2(s)

a(s)
bc2(s)
a(s)

bc1(s)
a(s)

 (5.1)

In this case, the set BDFM-Decoupling matrix is given by:

Gc(s) ·H(s) =


bc1(s)
a(s)

bc2(s)
a(s)

−bc2(s)
a(s)

bc1(s)
a(s)

 ·

bc1(s)
a(s) −bc2(s)

a(s)
bc2(s)
a(s)

bc1(s)
a(s)



=


b2
c1(s) + b2

c2(s)
a2(s) 0

0 b2
c1(s) + b2

c2(s)
a2(s)



(5.2)

The PI controller is much used in regulating electrical machines, and the PI
coefficients calculation is available in different forms. However, the order of the
obtained open-loop system is very high, twelfth order, consequently, we propose
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order reduction of the set BDFM-Decoupling matrix at the synchronous speed [79].

5.2.2 Order reduction of the set BDFM-Decoupling action

Admittedly, complex systems so-called large-scale systems are difficult to manipu-
late either for studying their stability or for synthesising regulators which impose
model order reduction and/or decomposition into subsystems [87, 112–118]. Even
though the BDFM’s model is linearised about an operating point, its linear model
is of sixth order. Furthermore, the use of the decoupling transfer function increases
the order of the set BDFM-Decoupling matrix into twelfth order. To reduce this
set’s order, we have used a frequency aggregation method which provides a reduced-
order transfer function with a good approximation of the original one.

Consider a Single-Input Single-Output (SISO) linear time-invariant system hav-
ing the following n-th-order transfer function:

G(s) = a2,ns
n−1 + · · ·+ a23s

2 + a22s+ a21

a1,n+1sn + · · ·+ a13s2 + a12s+ a11
(5.3)

Using Maclaurin development, the transfer function G(s) can be written as:

G(s) = 1

γ1 + 1
γ2

s
+ 1

γ3 + 1
γ4

s
+

.. .

1
γ2n

s

(5.4)

The k-th-order transfer function approximant of G(s) is given by the coming
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relation:
Gk(s) = 1

γ1 + 1
γ2

s
+ 1

γ3 + 1
γ4

s
+

.. .

1
γ2k

s

(5.5)

where k is less than n, and coefficients γi are calculated according to the following
Routh table.

Tab. 5.1: Routh table for model order reduction

a11 a12 a13 a14 · · ·

a21 a22 a23 · · ·

γ1 = a11

a21
a31 = a12 − γ1a22 a32 = a13 − γ1a23 a33 = a14 − γ1a24 · · ·

γ2 = a21

a31
a41 = a22 − γ2a32 a42 = a23 − γ2a33 · · ·

γ3 = a31

a41
a51 = a32 − γ3a42 a52 = a33 − γ3a43 · · ·

γ4 = a41

a51
a61 = a42 − γ4a52 · · ·

γ5 = a51

a61
a71 = a52 − γ5a62 · · ·

γ6 = a61

a71
· · ·

...

The first and second rows of Table 5.1 contains coefficients of the original trans-
fer function’s denominator and numerator, respectively, whereas the remaining
entries are computed using the following recursion:

aij = ai−2,j+1 − γi−2 · ai−1,j+1 (5.6)
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γl = al,1
al+1,1

(5.7)

where 3 ≤ i ≤ 2n+ 1, 1 ≤ j ≤ n and 1 ≤ l ≤ 2n.

The set of BDFM-Decoupling matrix is given by:

G(s) ·H(s) =


sys(s) 0

0 sys(s)

 (5.8)

Writing sys(s) of the BDFM prototype rotating at the synchronous speed gives:

sys(s) =
(

9.61319× 1012 + 9.17281× 1011s+ 2.30051× 1010s2 + 7.38402

× 107s3 + 1.25993× 106s4 + 1951.16s5 + 25.464s6 + 0.020927s7

+ 0.000222963s8 + 7.88675× 10−8s9 + 7.1406× 10−10s10
)

÷
(

7.00659× 1013 + 1.33712× 1013s+ 9.69339× 1011s2 + 3.23222

× 1010s3 + 4.67684× 108s4 + 2.52188× 106s5 + 23722.2s6

+ 65.3655s7 + 0.456208s8 + 0.000690077s9 + 3.8099× 10−6s10

+ 2.56377× 10−9s11 + 1.16061× 10−11s12
)

(5.9)

By applying the aggregation to our system (BDFM-Decoupling matrix), the
obtained reduced equivalent transfer function is:

sysreduced(s) = 61.1836− 0.0604832s
445.938 + 42.1101s+ s2 (5.10)

Figure 5.1 shows the step responses of the original system and the reduced-order
equivalent system while Fig. 5.2 presents their bode diagram.

It can be seen that the system and its approximant have identical step responses.
Moreover, the frequency response demonstrates that a similarity is conducted in a
wide frequency range. In conclusion, the original and reduced transfer functions
have similar behaviours, thus, the reduced one can be used to calculate controllers
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Fig. 5.2: Bode diagram of sys(s) and its reduced-order approximant.
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for the BDFM.

5.2.3 PI coefficients calculation: Naslin’s method

The use of the decoupling matrix allows us to deal with the problem as being a SISO
system rather than MIMO one. As mentioned earlier, the reduced-order system can
be easily used to determine regulator coefficients based on available linear control
techniques.

In most cases, PI coefficients are tuned based on experiences. In this disserta-
tion, PI coefficients have been carefully calculated in an optimal way using Naslin
polynomial technique [119–121].

Naslin’s method is based on controlling the damping ratio of the step response
of the controlled minimum phase system.

Let’s consider that the closed-loop transfer function has the following denom-
inator:

D(s) = a0 + a1s+ · · ·+ ans
n (5.11)

Using coefficients of the foregoing equation, characteristic pulsatances can be
given as:

ωi = ai
ai+1

i = 0, 1, 2, · · · , (n− 1) (5.12)

Characteristic ratios between each two successive characteristic pulsatances are
given by:

αi = ωi
ωi−1

i = 0, 1, 2, · · · , (n− 1) (5.13)

Writing the characteristic ratios as function of characteristic polynomial coeffi-
cients yields:

αi = ai
ai−1 · ai+1

i = 0, 1, 2, · · · , (n− 1) (5.14)

Naslin advocated that these characteristic ratios must all be equal to a given
coefficient who determines the overshoot of the step response of the controlled
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system:
α1 = α2 = · · · = αn−1 = α (5.15)

Moreover, Naslin establishes experimentally that this coefficient must be two
in order to obtain optimal damped response. Furthermore, for closed loop without
much oscillations, α must be within the interval 1.8 ≤ α ≤ 2.4. In fact, for a second
order system having the damping ratio ξ, the approximation of Naslin is exact, i.e.

for a coefficient ratio α = 2, the damping ratio will be ξ =
√

2
2 .

Therefore, we need to find the PI coefficients which maintain the characteristic
ratios of the closed-loop transfer function within the desired range. Without loss of
generality, because the reduced order model described in Eq. (5.10) contains zero
in the right-half plane, and the coefficient introducing this zero is of small value
compared to the rest of the numerator coefficients (the zero can only influence
in high frequencies), Naslin polynomial technique has been applied on Eq. (5.10)
giving satisfactory results.

The PI regulator used is of parallel form:

PI(s) = Kp + Ki

s
(5.16)

where Kp = 7.057 and Ki = 147.97.

The control scheme of the produced currents by the BDFM is illustrated in Fig.
5.3.

Fig. 5.3: Control diagram of the power winding currents using PI controller.
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5.2.4 Results and discussion

In order to validate the proposed current control loop of the BDFM operating in
generation mode for wind energy applications, a simulation is carried out using
Matlab/Simulink environment.

As the proposed PI controller coefficients are calculated for the synchronous
speed, and the BDFM effective speed range is less than 10% around the synchronous
speed (750 rpm), thus, two operating points have been chosen outside this effective
range of speed to evaluate the effectiveness of the proposed PI controller.

Results obtained for three different operating speeds, 650 rpm, 750 rpm and
850 rpm are presented in Fig 5.4.

It can be noticed that at synchronous speed, the response of the control system
under the proposed PI control strategy is satisfactory; the steady-state errors have
been eliminated and, both rise and settling times have been kept within small
values which are comparable to those of the BDFM in open loop. For operating
speeds other than the synchronous speed, the controller performances degrade with
slower responses because the PI controller coefficients have been calculated in an

optimal way
(
ξ ≈
√

2
2

)
, and any change in the BDFM dynamic may lead to weaker

performances. Additionally, the voltage component vdc is only effective on the
current component idp, and has no significant effect on the current component iqp,
and the voltage component vqc has no major influence on the current component idp
but only effective on the current component iqp, that is to say, the coupling effect
is eliminated.

Table 5.2 summarises dynamic performances of the PI controller in digital form.

This table contains numerical values of the settling time, overshoot and steady-
state error for different operating speeds. Results show that at the synchronous
speed the settling time is a little bit bigger than its original settling time (two
times or thereabouts). But at the operating speeds 650 rpm and 850 rpm the
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Fig. 5.4: Step response of the closed-loop for different operating points.

settling time is much bigger, thus, a robust controller is necessary.
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Tab. 5.2: Dynamic performances of the PI controller

Settling time (sec) Overshoot % Steady-state error (A)

650 (rpm) 0.83 Overdamped 0

750 (rpm) 0.25 16.2 0

850 (rpm) 0.75 Overdamped 0

5.3 Robust Control of the BDFM

Previously, the PI controller gives good performances in closed-loop only at the
synchronous speed. However, the obtained results come from simulation, but in
real application, more precautions should be taken into account. Actually, most
of BDFM model parameters are not directly accessible and the identification task
does not give good approximation. Besides that, simplifying hypotheses as well as
linearisation lead to modelling errors. Thus, we propose in this section the use of
robust controller [80].

5.3.1 H∞ control theory

The robust control is a set of tools which allow [122]:

• Properties analysis of a closed-loop with a system to be regulated including
uncertainties;

• The synthesis of a non-adaptive regulator (i.e. with fixed coefficients) for a
family of systems to be controlled with uncertainties (parametric and non-
parametric) such that a certain level of closed-loop performance is preserved
for the whole family of systems.

Robust control can address the following problems which conventional control-
lers cannot perform:

• It works on paper and in simulation, but not in practice;
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• The prototype and the preproduction of a product having a regulator work
well, but the series show a high percentage of failures related to problems of
stability or degradation of performance of the closed-loop.

The interaction between inputs and outputs leads to a number of characteristic
transfer matrices. We note particularly:
the sensitivity function:

S(s) = (I + G(s) ·C(s))−1 (5.17)

Fig. 5.5: Schematic block diagram of the sensitivity.

which represents perturbations influence on the measured outputs;
the complementary sensitivity function:

T (s) = (I + G(s) ·C(s))−1 ·G(s) ·C(s) (5.18)

Fig. 5.6: Schematic block diagram of the complementary sensitivity.

which represents the influence of the noise on the measured outputs;
the function:

R(s) = (I + C(s) ·G(s))−1 ·C(s) (5.19)
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Fig. 5.7: Schematic block diagram of the control signal output.

which represents the impact of the perturbation on the control signals;
and the open-loop:

L(s) = G(s) ·C(s) (5.20)

Figure 5.8 presents typical curves of the open-loop, sensitivity and complement-
ary sensitivity.
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Fig. 5.8: Bode magnitude of a typically controlled system.

Generally, the regulator can compensate poles and/or zeros from the open-loop,
the sensitivity or the complementary sensitivity. These poles and/or zeros disappear
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from L(s), S(s) and T(s), but reappear in the following two transfer functions:

(I + C ·G)−1 ·C

(I + G ·C)−1 ·G

Consequently, automation engineers divided the complex s-plane into 3 sub-
areas as shown in Fig. 5.9.

Fig. 5.9: Acceptability of compensation of poles and/or zeros.

As illustrated in the figure, it is not recommended to compensate poles and
zeros in the shaded left half disk; meanwhile the darkly shaded right half-plane
indicates that the compensation is prohibited.

In fact, for a given nominal plant and controller, it is possible to know if the
closed-loop is stable or not. Indeed, the graphical technique of Nyquist is very
useful which state that the closed-loop is stable if Nyquist locus of the open-loop
keep the critical point (−1 +  · 0) at its left side. Figure 5.10 shows the Nyquist
plot of an open-loop system with uncertainty.

As can be seen, the Nyquist locus of the open-loop indicates that the closed-
loop will be stable. Besides of that, the presence of uncertainty may cause the
real system to be unstable in closed-loop, hence, it is preferred to have comfortable
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Fig. 5.10: Nyquist diagram of a given open-loop with uncertainty.

stability margins. Figure 5.11 shows Nyquist plot of a system have good phase and
gain margin.

As shown in Fig. 5.11, the open-loop has good phase and gain margins. But,
nevertheless, the robustness from the angle of stability is very weak since the min-
imum distance (critical distance) between the Nyquist plot and the critical point
is very small. Accordingly, comfortable critic distance implies good gain and phase
margin, but the opposite is not true.

Gain margin and phase margin are related to the critical distance by the fol-
lowing inequalities:

Am >
1

1− dcrit
(5.21)

φm > 2 arcsin(dcrit2 ) (5.22)
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where:

dcrit = min
ω

(dist (L(jω), scrit))

= min
ω
|L(jω)− scrit|

= min
ω
|L(jω) + 1|

= 1

max
ω
| 1
L(jω) + 1 |

= 1
‖S‖∞

(5.23)

The H∞-norm of a system proper and asymptotically stable is defined as:

‖G‖∞
∆= max

ω∈IR+
0

|G(jω)| (5.24)

In time-domain, the H∞-norm can be expressed as:

‖G‖∞ = max
u

‖y‖2
‖u‖2

(5.25)
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In multivariable case, the H∞-norm is defined as:

‖G‖∞
∆= max

ω∈IR+
0

σ̄ (G(jω)) (5.26)

where σ̄ is the maximal amplification, i.e. the biggest singular value.

The singular values decomposition of a given matrix G is defined as:

G = U · S · V T (5.27)

where columns of U are the left-singular vectors, S is diagonal (rectangular) matrix
and its entries are positives and known as singular values and, columns of V are
the right-singular vectors.

Figure 5.12 illustrates visualisation of the singular values decomposition of a
given matrix 2×2. For numerical application the matrix chosen is the BDFM
prototype in steady-state rotating at 750 rpm which is given by the following matrix:

G =


0.369745 −0.0221483

0.0221483 0.369745

 (5.28)

In this case, U , S and V are given by:

U =


−0.998211 −0.059794

−0.059794 0.998211



S =


0.370408 0

0 0.370408



V =


−1 0

0 1



(5.29)
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Fig. 5.12: Singular values decomposition.

As can be seen from Fig. 5.12, this figure is divided into 4 subfigures. The first
one at the top-left represents the unit disc in blue together with the two canonical
unit vectors in red and green. We can see the action of the matrix G on that
unit disk and those unit vectors on subfigure bottom-left, which distorts it to an
ellipse. The singular values decomposition decomposes the matrix G into three
simple transformations: an initial rotation V T which is presented on subfigure top-
right, then a scaling S along the coordinate axes (subfigure bottom-right), and a
final rotation U . The lengths of the semi-axes of the ellipse are the singular values
of G which can be computed as the square roots of the non-zero eigenvalues of both
GT ·G and G ·GT .

Figure 5.13 represents the singular values of the BDFM for different operating
points.

As illustrated, the dynamic behaviour and steady-state gain are greatly affected
by changes in the rotor angular speed. Additionally, only at the synchronous speed
the BDFM behave like a first order system. Moreover, two antiresonance frequen-
cies appear clearly, one at a constant frequency, 313.3 rad/s, and the other frequency
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Fig. 5.13: Singular values of the BDFM.

is decreasing as the rotor speed increase, 261.3 rad/s for 500 rpm and 208.7 rad/s
for 1000 rpm. These antiresonance frequencies are related to the angular speeds of
the reference frames of the d− q transform. The first 313.3 rad/s is approximately
the frequency of the grid 50 Hz, and the second is not other than the angular speed
ωp − ppωr. Indeed, the d− q model is for converting sinusoidal quantities into con-
stants ones, and any input in the d − q model at those frequencies would implies
on the output a maximum value in an axis and zero in the other axis as long as
they rotate at exactly the same speed.

The standard configuration of the H∞ control problem is given by Fig. 5.14
[123–125] where P (s) represents the generalised plant, K(s) is the controller, w

 

   K s  

    P s
 
 

w z

u y

Fig. 5.14: General formulation of the H∞ control problem.

is the exogenous inputs, z denotes the output signals to be minimised, y is the
measurement outputs and u is the control signals.
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The analysis results have proved that to obtain nominal performance and robust
stability, the three matrices S, R and T have to be minimised. This synthesis may
seem contradictory but it is not since these minimisations are imposed in different
frequency ranges [123–126]. Henceforth, weighting matrices W 1(s), W 2(s) and
W 3(s) are introduced.

The closed-loop of the uncertain plant is robust in stability and performance if
and only if: 

∥∥∥∥W 1 · S
∥∥∥∥
∞
< 1∥∥∥∥W 2 ·R

∥∥∥∥
∞
< 1∥∥∥∥W 3 · T

∥∥∥∥
∞
< 1

(5.30)

Or more commonly: ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

W 1 · S

W 2 ·R

W 3 · T

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

< 1 (5.31)

This result is known as the mixed sensitivity problem. TheH∞ problem consists
in minimising the effect of perturbation on the system, i.e. minimising the ratio∥∥∥∥∥ z

w

∥∥∥∥∥
2

However, in the worst case this ratio is equal to
∥∥∥∥∥F1 (P ,K)

∥∥∥∥∥
∞
, where F1 is the

lower Redheffer product.

The problem can be formulated as follows: Given P (s) and γ > 0, finding K(s)
which:

• stabilises the closed-loop system;

• ensures
∥∥∥∥∥F1 (P ,K)

∥∥∥∥∥
∞
< γ.
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Calculations prove that satisfying
∥∥∥∥∥F1 (P ,K)

∥∥∥∥∥
∞
< γ comes to satisfy

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

W 1 · S

W 2 ·R

W 3 · T

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

<

1 which is the condition obtained in Eq. (5.31).

The mixed sensitivity structure is given in Fig. 5.15.

Fig. 5.15: Mixed sensitivity structure for H∞ controller design.

The good choice of weighting functions allows us to achieve good dynamic re-
sponse with good robustness in stability. The weighting functions W1 and W3

chosen for our BDFM prototype model are calculated according to a practical for-
mula described in Matlab help which is given by:

W1 =
s

m
+ w0

s+ w0 · a
(5.32)

W3 =
s+ w0

m
a · s+ w0

(5.33)

where m is the desired bound on ‖S‖∞ and ‖T‖∞, w0 is the desired bandwidth of
the closed-loop and, a is the maximum steady-state error.

In our study, the control weight is not considered and chosen small enough, m is
chosen 2 for better robustness in stability, w0 is chosen 50 rad/s and therefore any
real wind profile can be tracked easily and, a is chosen 1/1000. Thus, the weighting
functions are as follows:

W1 = 100 + s

0.1 + 2s (5.34)
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W2 = 10−4 (5.35)

W3 = 25 + s

50 + 0.001s (5.36)

Numerical results of the controller K(s) are obtained using the function syntax
‘mixsyn’ of the Robust Control Toolbox of Matlab, which minimises the H∞-norm
of the weighted mixed sensitivity. The H∞ controller calculated for the BDFM
prototype at the synchronous speed can be expressed as a transfer function matrix
2× 2 where each entry is written as a ratio of two polynomials of s:

K(s) =


numK11(s)
denK(s)

numK12(s)
denK(s)

−numK12(s)
denK(s)

numK11(s)
denK(s)

 (5.37)

numK11 = 3.65741× 106s9 + 2.87427× 1013s8 + 1.53506× 1018s7

+ 5.37688× 1021s6 + 5.3055× 1023s5 + 8.27093× 1026s4

+ 4.08968× 1028s3 + 2.92789× 1031s2 + 6.13191× 1032s

+ 1.4058× 1031

(5.38)

numK12 = 3679.74s9 + 2.89166× 1010s8 + 1.53271× 1015s7 + 5.0865

× 1018s6 + 1.44272× 1022s5 + 4.80005× 1025s4 + 1.78633

× 1027s3 + 3.84257× 1030s2 + 3.67997× 1031s+ 8.42571× 1029

(5.39)

denK = s10 + 1.56174× 107s9 + 6.10338× 1013s8 + 4.51672× 1017s7

+ 8.45942× 1020s6 + 7.00688× 1022s5 + 1.29347× 1026s4 + 2.51222

× 1027s3 + 4.58439× 1030s2 + 2.1043× 1029s+ 2.4148× 1027

(5.40)

Indeed, the H∞ control theory provides us controllers with good robustness in
performances and stability. However, the order of the obtained controllers is very
high. Hence, the controller can only be implemented by computation rather than
what have been long-established physically constructed.

Seeing the high order of the obtained controller and its huge coefficients, see Eqs.
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(5.37), (5.38)-(5.40), it seems clearly that its implementation in case of electrical
machines costs too much. In order to simplify this controller, we opted for the
reduction of the controller’s order.

Each element of K(s) have been aggregated separately using the aggregation
method described in Section 5.2.2. Numerical results of the final H∞ controller are
given by:

Knew(s) =


Knew11(s) Knew12(s)

−Knew12(s) Knew11(s)

 (5.41)

Knew11(s) = 33.87s2 + 717.6s+ 16.45
5.364s2 + 0.2463s+ 0.002827 (5.42)

Knew12(s) = 8.861s2 + 85.32s+ 1.954
10.62s2 + 0.4879s+ 0.0056 (5.43)

Singular values of the reduced-order robust controller are mapped together with
those of the original robust controller in Fig. 5.16.

10
−2

10
0

10
2

10
4

−20

0

20

40

60

80

100

Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

 

 

K

K
new

Fig. 5.16: Bode diagram of the regulator.

As shown in this figure, the new controller has the same performances in low-
mid frequencies. In high frequencies, the controller increases the noise magnitude,
but this may not make a problem in the control procedure since the BDFM is a
good noise filter as illustrated in its singular values loci in Fig. 5.13
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The proposed H∞ control structure is presented in Fig. 5.17.

Fig. 5.17: Control diagram of the power winding currents.

5.3.2 Results and discussion

In order to validate the proposed current control loop of the BDFM operating in
generation mode for wind energy applications, a simulation is carried out using
Matlab/Simulink environment.

Analogously to what has been done in the previous section with the PI control-
ler. The proposedH∞ controller is calculated for the synchronous speed. Therefore,
two other operating speeds (650 rpm and 850 rpm) have been chosen outside of
the BDFM effective speed range to evaluate the effectiveness of the proposed H∞
controller.

Results obtained for the three different operating speeds are presented in Fig.
5.18.

As follows from the left side of Fig. 5.18 which represents from the top to the
bottom the singular values loci of the sensitivity function for the three different op-
erating points, 650 rpm, 750 rpm and 850 rpm, respectively. The magnitude of the
sensitivity function at 750 rpm is always less than the dashed red piecewise func-
tion which implies robustness in dynamic performances and stability. Moreover,
the transition frequency at which the sensitivity changes from attenuating to amp-
lifying disturbances known also as the ‘sensitivity crossover frequency’ is within
the interval from 143.5 rad/s to 381.2 rad/s (in our MIMO model we have two
singular values), which is sufficient to attenuate disturbances and track a real wind
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Fig. 5.18: Frequency and time responses of the mixed sensitivity structure-based
BDFM.

profile [127,128]. Furthermore, for the two operating speeds 650 rpm and 850 rpm,
performances may degrade with slower tracking abilities compared to those at the
synchronous speed.
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Tab. 5.3: Dynamic performances of the H∞ controller

Settling time (ms) Overshoot % Steady-state error (A)

650 (rpm) 0.1 3.9 0.0014

750 (rpm) 0.057 0.06 5 · 10−4

850 (rpm) 0.26 6.6 5 · 10−4

Generally speaking, in the low frequencies, the magnitude of the sensitivities is
less than or equal to -60 dB, thus indicates steady-state error is less than or equal
a thousandth of the input, whereas in the high frequencies, the sensitivities gain is
held to zero, so, we can conclude good disturbance rejection.

On the right side where the step response of the complementary sensitivity is
presented for the three operating speeds, 650 rpm, 750 rpm and 850 rpm, it can be
seen that performances of the H∞ controller are satisfactory including fast settling
and rise times, and steady-state error very small, about one per mille. In addition to
the good performances in time response, the coupling effect is greatly minimised,
but not eliminated as may a decoupling action do. In fact, some performances
(settling time and steady-state error) of the H∞ controller deteriorate when the
operating speed is other than the synchronous one in view of the fact that the
dynamic of the BDFM changes brusquely with respect to variation in the shaft
speed.

Table 5.3 summarises the dynamic performances of the H∞ controller in digital
form.
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5.4 Application toWind Turbine based on BDFM

5.4.1 Wind turbine model

The mechanical power of the wind turbine on the BDFM rotor shaft can be rep-
resented by [56]:

Pw = 1
2Cp(λ, θ)ρπR

2V 3
w (5.44)

where Cp is the power coefficient, Vw is the wind velocity, ρ is the air density and
R is the radius of the turbine planes.

The produced turbine torque is given by the ratio below:

Tt = Pw
ωt

(5.45)

The mechanical coupling between the turbine and the rotor of the BDFM is
provided through the gearbox. The mechanical torque of the wind turbine referred
to the BDFM side is given by:

Tm = Tt
GB

(5.46)

where GB is the gear ratio which maintains the BDFM shaft speed within a desired
speed range. Likewise, the turbine shaft speed can be expressed as a function of
the BDFM shaft speed and the gear ratio as follows:

ωt = ωr
GB

(5.47)

Based on Eq. (5.44), only certain percentage of the available wind power can
be transformed into mechanical power. This percentage is related to the power
coefficient and is unique for each wind turbine. The power coefficient can be ap-
proximated as:

Cp(λ, θ) = 0.22
(116
λi
− 0.4θ − 5

)
e

−12.5
λi (5.48)
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1
λi

= 1
λ+ 0.08θ −

0.035
1 + θ3 (5.49)

where λ is the tip-speed ratio and is given by:

λ = ωtR

Vw
(5.50)

Table 5.4 complete the parameters used for simulation implementation of wind
turbine based on the BDFM whose electric parameters have been given in Table
3.1.

Tab. 5.4: Wind turbine and BDFM mechanical parameters

Parameter Symbol Value

Blade length R 2.5 (m)

Air density ρ 1.25 (kg/m3)

Gearbox ratio GB 1.25

Total inertia J 0.1 (kg ·m2)

Viscous friction B 0.0005 (N ·m · s)

Given that the selected d− q reference frame is aligned with the power winding
flux, therefore, the direct component of the grid voltage equals to zero and the
quadrature component equals to the voltage maximum magnitude [93,129–131]:


vdp = 0

vqp = vp

(5.51)

Using Eq. 5.51, the relationship between powers (active and reactive) of the
power winding and currents (direct and quadrature) of the power winding can be
written by:

Pp = 3
2vqpiqp (5.52)

Qp = 3
2vqpidp (5.53)
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Therefore, references of the power winding currents can be obtained by:


i∗qp = 2

3vqp
P ∗p

i∗dp = 2
3vqp

Q∗p

(5.54)

Control structures of the BDFM-based wind turbine using PI and H∞ control-
lers are represented schematically in Figs. 5.19 and 5.20, respectively.
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Fig. 5.19: Schematic representation of the BDFM PI control structure.

The Matlab/Simulink model of wind turbine based on BDFM is shown in Fig.
5.21, where we were using a fixed-step simulation time of 5× 10−5sec. The output
of the decoupling matrix/H∞ controller go through saturation of ± 12v.

The turbine block contains the turbine model and the shaft speed equation as
illustrated in Fig. 5.22.

It is worth pointing out that the control strategies developed in this Chapter
either with PI or H∞ controllers are mainly focusing on the validation of the pro-
posed mathematical model of the BDFM for control in Chapter 3, and are not
focusing on the maximisation of the produced power as long as the maximum
power point tracking requires both pitch angle and shaft speed controls which are
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Fig. 5.20: Schematic representation of the BDFM H∞ control structure.
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outside the scope of the dissertation.

The power winding active power reference, P ∗p , is generally come from the elec-
tricity demand forecast [132,133], or from the wind speed sensor. In the following,
the active power reference chosen is steps at different rotor speeds, and the reactive
power reference is always 0.

5.4.2 Control without parameters uncertainty

In order to validate the proposed control schemes, the obtained controllers will be
applied on the non-linear model of the BDFM-based wind turbine.

Constant wind speed

In Fig. 5.23, the dynamic response of steps of wind speed is presented. The steps
of the wind speed are chosen long enough to reach the steady-state, then, steps on
the active power reference P ∗p appear which expose the transient-state at different
operating speeds.

Figure 5.24 represents the zoom of the active and reactive powers of Fig. 5.23.

As can be seen form Fig. 5.23a the wind speeds are 14 m/s, 8.5 m/s, 12.5 m/s,
7 m/s and 11 m/s, which correspond to the changing times t = 6 s, t = 12 s, t
= 18 s and t = 24 s, respectively. For steps of the active power reference of ±
600 Watt at t = 4 s, t = 9 s, t = 15 s, t = 21 s and t = 27 s, the steady-state
errors of the active and reactive powers are ± 20 Watt and ± 30 VAR, and the
BDFM works in the sub-synchronous mode and the super-synchronous mode with a
satisfactory dynamic response with the H∞ control method. However, the response
with PI controller is slower, and has a large oscillations in all speed range (± 200
Watt) due to the converter whose switching frequency is relatively small, 2 KHz.
Moreover, the overshoot in the case of H∞ controller is very small, for instance 5%
at the step of 9 s and 2.7% at the step of 21 s, but at any rate, the overshoot will not
impact the system negatively because the BFDM inherits strong ability to handle
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Fig. 5.23: Dynamic response of constant wind speed.

the current overshoot, additionally, the stepping of the active power reference in
this test is an extreme condition, which would not happen in practice since P ∗p
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Fig. 5.24: Zoom of the dynamic response of constant wind speed.

would be generated by an outer loop of control for maximisation of the produced
power.

Variable wind speed

In general, the rotor speed is variable in practical applications, so, we consider in
the following that the wind turbine is subject to a variable wind velocity. The wind
speed profile used in this study is given by:

Vw = 10 + 2.2 sin(0.2t) + 0.6 sin(4t) + 0.4 sin(3t)

+ 1.2 sin(1.3t) + 0.1 sin(100t) + 0.1 sin(8t)
(5.55)

Figure 5.25 represents the dynamic response of the wind turbine based on the
BDFM for a variable wind speed.

Figure 5.26 represents the zoom of the active and reactive powers of Fig. 5.25.

As can be seen from the curves presented in Fig. 5.25, performances of the
PI controller are limited as long as the desired active and reactive power are not
reached perfectly, the curves in steady-state are not centred around the desired
value, i.e. the reference signal, but, alter around their reference as the wind speed
change instead. Moreover, the H∞ controller shows good steady-state and transi-
ent performances, where the settling time, rise time and the overshoot are almost
exactly the same for constants wind speed.
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Fig. 5.25: Dynamic response of variable wind speed.
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Fig. 5.26: Zoom of the dynamic response of variable wind speed.

5.4.3 Control in the presence of parameters uncertainty

To study the obtained controllers’ robustness, dynamic responses of steps in the act-
ive power, meanwhile the reactive power is regulated to zero are given considering
the parameters imprecise.

We suppose in the following that the electrical parameters of the BDFM have
been inaccurately identified. To do so, we assume that the indentified rotor para-
meters are different by 5% from the real rotor parameters, and the identified stator
parameters are different by 10% from the real stator parameters. The assumed real
parameters of the BDFM are given in Table 5.5.

Tab. 5.5: The assumed BDFM real parameters

Resistance (Ω) Self inductance
(H)

Mutual
inductance (H)

Power winding 1.5588 0.6433 0.2179

Control winding 1.1869 0.1339 0.0658

Rotor 0.4966 0.1392
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Constant wind speed

Figure 5.27 represents the dynamic response of the BDFM driven by a wind turbine
to steps of wind speed in the presence of parameters uncertainty.

Figure 5.28 represents the zoom of the active and reactive powers of Fig. 5.27.

As can be seen, the PI controller provides in the presence of uncertain paramet-
ers similar performances to those obtained in certain parameters. This does not
demonstrate the effectiveness of the PI controller for the BDFM since the active
and reactive powers are centred around their references and the tracking error is
within about ± 200 Watt and ± 300 VAR, respectively.

Besides of that, it can also be seen that the H∞ method achieves a good control
performance in a wide rotor speed range and under parameters uncertain. In fact,
with parameters uncertain, the control performance of the BDFM system slightly
decreases. The settling time increases, for example 4.5 ms in certain parameters
and 7 ms in the presence of uncertainties at the step of the 21st s, moreover, the
coupled terms have bigger effect compared to the case using nominal parameters
where the reactive power reach its maximum value 72 VAR to the active power
step at 9 s meanwhile its maximum value for that step in certain parameters is just
55 VAR. In spite of this degradation in some performances, these results prove the
robustness of the H∞ method with respect to BDFM parameters uncertainty.

Variable wind speed

Figure 5.29 represents the dynamic response of the BDFM driven by a wind turbine
for a variable wind speed and under parameters uncertainty.

Figure 5.30 represents the zoom of the active and reactive powers of Fig. 5.29.

The previous wind profile has been used. As can be seen, the proposed control
structure using the H∞ controller adjusts the active and reactive powers independ-
ently (a small coupling for a bit), and it achieves a good steady state performance
as fast as in constants wind speed. However, the maximum value of the coupling
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Fig. 5.27: Dynamic response under constant wind speed in the presence of para-
meters uncertainty.
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Fig. 5.28: Zoom of the dynamic response for constant wind speed in the presence
of parameters uncertainty.

effect is slightly bigger compared to the case of certain parameters, 80 VAR in
uncertain parameters and 65 VAR in certain parameters at t = 21 s.

In spite of the inaccurate electrical parameters used for the calculation of the
controller, the dynamic response is as good as in case of precise identification, which
demonstrates the robustness of the H∞ controller.

However, for the PI controller, the regulator cannot track the powers references.
Indeed, the wind velocity changes affecting with it the dynamic of the BDFM.
Additionally, the rise time is bigger compared to the case of certain parameters, 19
ms at 9 s and 28 ms at 21 s become 27 ms and 160 ms, respectively. In fact this study
demonstrates the limit of one loop PI controller for such complex application. The
commonly used PI control structures for the BDFM requires multi-PI controllers
to perform cascade control loop structure [94,109,134–137].

5.5 Conclusions

In this Chapter we have proposed two control strategies, both of which have been
validated by simulation. These modest contributions are for the BDFM working as
generator connected to the grid. The BDFM is modelled as a MIMO system with
a high order transfer function matrix and highly coupled terms.
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Fig. 5.29: Dynamic response under variable wind speed in the presence of para-
meters uncertainty.
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Fig. 5.30: Zoom of the dynamic response for variable wind speed in the presence
of parameters uncertainty.

To calculate the coefficients of the PI controllers, firstly, we proposed to de-
couple between the direct and quadrature axes. To do so, a decoupling matrix
is calculated. But, nonetheless, the set of BDFM-Decoupling matrix is having a
very high order. Thus, to facilitate the task of calculating the PI coefficients for
the enormous transfer function matrix, we performed an aggregation method. This
aggregation method in the frequency-domain provides low order transfer functions
with similar performances to the high order one. The approximant low order trans-
fer function is used then to calculate the PI coefficients using Naslin polynomial
technique.

On the other hand, seeing the complexity of the BDFM small signal model, a
robust control structure is proposed where the minimisation of the H∞-norm of the
weighted mixed sensitivity is performed. Unfortunately, the resulted H∞ controller
is expensive for implementation especially for electrical systems where the step time
needed is very small. Therefore, simplification of the resulted controller has been
done.

The proposed control schemes have been validated by simulation results on the
non-linear dynamic model of a wind turbine based on BDFM. It has been shown
that the decoupling action has a great effect and compensated the coupled terms
with acceptable performances. Furthermore, with the proposed control structures,
the BDFM is always stable in all operating speeds.
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For constant wind speed, the robust controller showed better waveforms in all
operating speeds including fast response and low oscillations in transient state.
Besides of that, responses with the PI controller match well the references but with
tracking error relatively large due to the small switching frequency of the converter.

Moreover, for variable wind speed, dynamic performances of both controllers
degrade especially in the case of the PI controller where the tracking objective is
not achieved which may shed light on the limit of having just one control loop using
the PI controller.

Furthermore, the performances under parameters variation are also tested. The
results show the validity of theH∞ controller which gives the best dynamic perform-
ance with smaller oscillation, which is practically important for the grid connection.

In fact, the more the parameters are imprecise, the more the control algorithms
provide low dynamic performances.

Eventually, the achieved performances by the mixed sensitivity synthesis which
include fast response time, very good tracking and comfortable robustness margin
in dynamic and stability, demonstrates a rigorous controller for future works on the
BDFM.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The objectives of this dissertation have been: to develop a new mathematical model
for the BDFM as generator in wind turbines by describing a direct relationship
between the control winding as input and the power winding as output; to analyse
the stability of the BDFM with respect to parameters variations and shaft speed
change; and to propose optimal control structure of wind turbines based on BDFM.
The specific contributions of this dissertation will now be summarised.

Firstly, the coupled circuit model of the BDFM was presented. After that,
some preliminaries about space vector and d − q transformation was presented to
introduce the d− q vector model of the BDFM.

Then, linearisation of the BDFM d− q vector model around an operating point
was performed. This has conducted us to derive two new mathematical models for
the BDFM:

• The first mathematical model proposed is a transfer function matrix describ-
ing the direct relation between the inputs which are the voltages of the power
and control windings, and the outputs which are the currents of the power
windings. This mathematical model is qualified to represent the dynamic of
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the BDFM in generation/motion mode;

• The second mathematical model proposed was derived from the first one as-
suming balanced grid voltage conditions and is, a transfer function matrix
representing the relationship between the control windings voltages as inputs
and the power winding currents as outputs. In fact, this mathematical model
was been for control purposes, and was validated by simulation and experi-
mental results which implies the validation of the first mathematical model
as well. The obtained model of the grid-connected BDFM is mathematically
of high order, multivariable, highly coupled, non-minimum-phase as it con-
tains unstable zeros, and may considered as linear parameter-varying since
the rotor speed is not constant and involves in the model. Therefore, control
tasks would be difficult.

Next, the first mathematical model was used to examine the stability of the
BDFM under unbalanced grid voltage conditions and under parameters variations.
Moreover, this study was done in an extremely wide speed range, and valid for
both of operation modes, motor and generator. This stability study was achieved
by checking the position of the poles of the BDFM in the complex s-plane whether
they are located in the left half-plane or not. In point of fact, the first and second
mathematical models of the BDFM share the same denominator which indicates
that the stability analysis is valid for both models. Generally speaking, in normal
(faultless) conditions, the BDFM is stable along all the possible rotor speed range.
Moreover, small change in the BDFM electric parameters do not alter its stability,
however, considerable change, like short circuits in electrical windings may destabil-
ise it. Besides that, the stability analysis allows us to define a centred orthotope
in which the BDFM is stable.

Lastly, the BDFM control model was used to propose two control structures for
the BDFM operating as generator connected to the grid:

• The first control structure was based on PI controllers. Perceiving the com-
plexity of the obtained model of the BDFM, the use of a decoupling matrix
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was proposed. The order of the resulted set BDFM-Decoupling action was
very high, thus, order reduction was used allowing the calculation of PI coef-
ficients in an optimal way using Naslin’s method. In fact, simulation results
for this control structure were only satisfactory for constants wind speed ig-
noring noises resulted from the converter. For variable wind speed the PI
cannot track the desired power perfectly. Thus, the conclusion that one PI
control loop is powerless in front of such complex systems;

• The second control structure was based on robust control theory where min-
imisation of the H∞-norm of the weighted mixed sensitivity is performed.
The resulted weighted mixed sensitivity based-H∞ controller is high-order
causing its practical application very costly; therefore, simplification of the
controller was carried out. The proposed control strategy was validated by
simulation results. The effectiveness of the control scheme was proved over
wide operating speed and under parameters uncertainties demonstrating rig-
orous controller for future works on the BDFM. In spite of the achieved
performances by the mixed sensitivity synthesis which include fast response,
very good tracking and comfortable robustness margin in dynamics and sta-
bility with respect to parameters uncertainties and operating speed change,
unfortunately, the more the parameters are imprecise the more the controller
provides weaker effect.

6.2 Future Work

The work of this thesis suggests and open the way for a number of possible directions
of research:

• Generalise the developed mathematical model for unbalanced grid voltage
conditions;

• Optimise the design of the BDFM for better stability areas and better effi-
ciency;
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• Identify the parameters of the BDFM with high accuracy;

• Application of non-linear methods on the BDFM to achieve better closed-loop
performances and study its stability;

• Employment of the estimation theory to perform sensorless control schemes
for the BDFM.

• Development of new approaches to control the BDFM under unbalanced grid
conditions.



Appendix A

Coefficients of the Transfer Matrix

Description of the coefficients of the common denominator of the BDFM transfer
function matrix model as a function of the electrical parameters:
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Description of the coefficients of the BDFM control transfer matrix numerators
as a function of the electrical parameters:
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Description of the coefficients of the BDFM power transfer matrix numerators
as a function of the electrical parameters:
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